Development Changes for Microsoft Agent Version 2.0

Microsoft Corporation

October 1998

This document covers the changes featured in Microsoft Agent Version 2.0.

Agent Control API Additions

Agent Control Properties

#RaiseRequestErrors Property

Description

Returns or sets whether errors for requests are raised.

Syntax

agent.RaiseRequestErrors [= boolean]

Part�Description��boolean�A Boolean value that determines whether errors in requests are raised.

True	(Default) Request errors are raised.

False 	Request errors are not raised.��Remarks

This property enables you to determine whether the server raises errors that occur with methods that support Request objects. For example, if you specify an animation name that does not exist in a Play method, the server raises an error (displaying the error message) unless you set this property to False.

It may be useful for programming languages that do not provide recovery when an error is raised. However, use care when setting this property to False, because it might be harder to find errors in your code.

--

Agent Control Methods

#ShowDefaultCharacterProperties Method

Description

Displays the default character’s properties.

Syntax

agent.ShowDefaultCharacterProperties [X , Y]

Part�Description��X�Optional. A short integer value that indicates the horizontal (X) screen coordinate to display the window. This coordinate must be specified in pixels.��Y�Optional. A short integer value that indicates the vertical (Y) screen coordinate to display the window. This coordinate must be specified in pixels.��Remarks

Calling this method displays the default character properties window (not the Microsoft Agent property sheet). If you do not specify the X and Y coordinates, the window appears at the last location it was displayed.

See Also

DefaultCharacterChange#DefaultCharacterChange event

Agent Control Events

#ActiveClientChange Event

Description

Occurs when the active client of the character changes.

Syntax

Sub agent.ActiveClientChange (ByVal CharacterID, ByVal Active)

Part�Description��CharacterID �Returns the ID of the character for which the event occurred.��Active�A Boolean value that indicates whether the client became active or not active.

True	The client application became the active client of the character.

False 	The client application is no longer the active client of the character.��

Remarks

When multiple client applications share the same character, the active client of the character receives mouse input (for example, Microsoft Agent control click or drag events). Similarly, when multiple characters are displayed, the active client of the topmost character (also known as the input-active client) receives Command events.

When the active client of a character changes, this event passes back the ID of that character and True if your application has become the active client of the character or False if it is no longer the active client of the character.

A client application may receive this event when the user selects a client application’s entry in character’s pop-up menu or by voice command, when the client application changes its active status, or when another client application quits its connection to Agent. Agent sends this event only to the client applications that are directly affected; that either become the active client or stop being the active client.

See Also

ActivateInput#ActivateInput event, Active#Active property, DeactivateInput#DeactivateInput event, Activate#Activate method

--

#AgentPropertyChange Event

Description

Occurs when the user changes a property in the Advanced Character Options window.

Syntax

Sub agent.AgentPropertyChange ()

Remarks

This event indicates when the user has changed and applied any property included in the Advanced Character Option window.

In your code for this handling this event, you can query for the specific property settings of AudioOutput or SpeechInput objects.

See Also

DefaultCharacterChange#DefaultCharacterChange event

--

#DefaultCharacterChange Event

Description

Occurs when the user changes the default character.

Syntax

Sub agent.DefaultCharacterChange (ByVal GUID)

Part�Description��GUID �Returns the unique identifier for the character.��

Remarks

This event indicates when the user has changed the character assigned as the user’s default character. The server sends this only to clients that have loaded the default character.

When the new character appears, it assumes the same size as any already loaded instance of the character or the previous default character (in that order).

See Also

ShowDefaultCharacterProperties#ShowDefaultCharacterProperties method, Load#Load method

--

#HelpComplete Event

Description

Indicates that context-sensitive Help mode has been exited.

Syntax

Sub agent.HelpComplete (ByVal CharacterID, ByVal Name, ByVal Cause)

Part�Description��CharacterID �Returns the ID of the clicked character as a string.��Name�Returns a string value identifying the name (ID) of the command.��Cause�Returns a value that indicates what caused the Help mode to complete.

The user selected a command supplied by your application.

The user selected the Commands object of another client.

The user selected the Open Voice Commands command.

The user selected the Close Voice Commands command.

The user selected the Show CharacterName command.

The user selected the Hide CharacterName command.

The user selected (clicked) the character.��

Remarks

Typically, Help mode completes when the user clicks or drags the character or selects a command from the character’s pop-up menu. Clicking on another character or elsewhere on the screen does not cancel Help mode. The client that set Help mode for the character can cancel Help mode by setting HelpModeOn to False. (This does not trigger the HelpComplete event.)

When the user selects a command from the character’s pop-up menu in Help mode, the server removes the menu, calls Help with the command’s specified ContextHelpID, and sends this event. The context-sensitive (also known as What’s This?) Help window is displayed at the pointer location. If the user selects the command by voice input, the Help window is displayed over the character. If the character is off-screen, the window is displayed on-screen nearest to the character’s current position.

If the server returns Name as an empty string (“”), it indicates that the user selected a server-supplied command.

This event is sent only to the client application that places the character in Help mode.

See Also

HelpModeOn#HelpModeOn property, ContextHelpID#ContextHelpID property

--

ListenComplete Event

Description

Occurs when Listening mode (speech recognition) has ended.

Syntax

Sub agent.ListenComplete (ByVal CharacterID, ByVal Cause)

Part�Description��CharacterID �Returns the ID of the listening character as a string.��Cause�Returns the cause of the complete event as an integer that may be one of the following:

1	Listening mode was turned off by program code.

2	Listening mode (turned on by program code) timed out.

3	Listening mode (turned on by the Listening key) timed out.

4	Listening mode was turned off because the user released the Listening key.

5	Listening mode ended because the user finished speaking.

6	Listening mode ended because the input-active client was deactivated.

7	Listening mode ended because the default character was changed.

8	Listening mode ended because the user disabled speech input.��

Remarks

This event is sent to all clients when the Listening mode time-out ends, after the user releases the Listening key, when the input active client calls the Listen method with False, or the user finished speaking. You can use this event to determine when to resume character spoken (audio) output.

If you turn on Listening mode using the Listen method and then the user presses the Listening key, the Listening mode resets and continues until the Listening key time-out completes, the Listening key is released, or the user finishes speaking, whichever is later. In this situation, you will not receive a ListenComplete event until the listening key’s mode completes.

The event returns the character to the clients that currently have this character loaded. All other clients receive a null character (empty string).

See Also

ListenStart#ListenStart event, Listen#Listen method

--

#ListenStart Event

Description

Occurs when Listening mode (speech recognition) begins.

Syntax

Sub agent.ListenStart (ByVal CharacterID)

Part�Description��CharacterID �Returns the ID of the listening character as a string.��

Remarks

This event is sent to all clients when Listening mode begins because the user pressed the Listening key or the input-active client called the Listen method with True. You can use this event to avoid having your character speak while the Listening mode is on.

If you turn on Listening mode with the Listen method and then the user presses the Listening key, the Listening mode resets and continues until the Listening key time-out completes, the Listening key is released, or the user finishes speaking, whichever is later. In this situation, when Listening mode is already on, you will not get an additional ListenStart event when the user presses the Listening key.

The event returns the character to the clients that currently have this character loaded. All other clients receive a null character (empty string).

See Also

ListenComplete#ListenComplete event, Listen#Listen method

--

Character Methods

#Listen Method

Description

Turns on Listening mode (speech recognition) for a timed period.

Syntax

agent.Characters (“CharacterID”).Listen State

Part�Description��State�Required. A Boolean value that determines whether to turn Listening mode on or off.

True	Turns Listening mode on.

False 	Turns Listening mode off.��

Remarks

Setting this method to True enables Listening mode (turns on speech recognition) for a fixed period of time (10 seconds). While you cannot set the value of the time-out, you can turn off Listening mode before the time-out expires. If you (or another client) successfully set Listening mode on and you attempt to set this property to True before the time-out expires, the method succeeds and resets the time-out. However, if the Listening mode is on because the user is pressing the Listening key, the method succeeds, but the time-out is ignored and the Listening mode ends based on the user’s interaction with the Listening key.

This method succeeds only when called by the input-active client and if speech services have been started. To ensure that speech services have been started, query or set the SRModeID or set the Voice setting for a Command before you call Listen -- otherwise the method will fail. To detect the success of this method, call it as a function and it will return a Boolean value indicating whether the method succeeded.

 If Genie.Listen(True) Then

 ‘The method succeeded

 Else

 ‘ The method failed

 End If

The method also fails if the user is pressing the Listening key and you attempt to set Listen to False. However, if the user has released the Listening key and Listening mode has not timed out, it will succeed.

Listen also fails if there is no compatible speech engine available that matches the character’s LanguageID setting, the user has disabled speech input using the Microsoft Agent property sheet, or the audio device is busy.

When you successfully set this method to True, the server triggers the ListenStart event. The server sends ListenComplete when the Listening mode time-out completes or when you set Listen to False.

This method does not automatically call Stop and play a Listening state animation as the server does when the Listening key is pressed. This enables you to determine whether to interrupt the current animation using the ListenStart animation by calling Stop and playing your own appropriate animation. However, the server does call Stop and plays a Hearing state animation when a user utterance is detected.

See Also

LanguageID#LanguageID property, ListenComplete#ListenComplete event, ListenStart#ListenStart event

--

ShowPopupMenu Method

Description

Displays the character’s pop-up menu at the specified location.

Syntax

agent.Characters (“CharacterID”).ShowPopupMenu x, y

Part�Description��x�Required. An integer value that indicates the horizontal (x) screen coordinate to display the menu. These coordinates must be specified in pixels.��y�Required. An integer value that indicates the vertical (y) screen coordinate to display the menu. These coordinates must be specified in pixels.��

Remarks

Agent automatically displays the character’s pop-up menu when the user right-clicks the character. If you set AutoPopupMenu to False, you can use this method to display the menu.

The menu remains displayed until the user selects a command or displays another menu. Only one pop-up menu can be displayed at a time; therefore, calls to this method will cancel (remove) the former menu.

This method should be called only when your client application is the active client of the character; otherwise it fails. To determine the success of this method you can call it as a function and it will return a Boolean value indicating whether the method succeeded.

 If Genie.ShowPopupMenu (10,10) = True Then

 ‘ The menu will be displayed

 Else

 ‘ The menu will not be displayed

 End If

See Also

AutoPopupMenu#AutoPopupMenu property

--

Think Method

Description

Displays the specified text for the specified character in a “thought” word balloon.

Syntax

agent.Characters ("CharacterID").Think [Text]

Part�Description��Text�Optional. A string that specifies the character’s thought output.��

Remarks

Like the Speak method, the Think method is a queued request that displays text in a word balloon, except that the Think word balloon differs visually. In addition, the balloon supports only the Bookmark speech control tag (\Mrk) and ignores any other speech control tags. Unlike Speak, the Think method does not change the character’s animation state.

The Balloon object’s properties affect the output of both the Speak and Think methods. For example, the Balloon object’s Enabled property must be True for text to display.

If you declare an object reference and set it to this method, it returns a Request object. In addition, if the file has not been loaded, the server sets the Request object’s Status property to "failed" with an appropriate error code number.

Agent’s automatic word breaking in the word balloon breaks words using white-space characters (for example, Space or Tab). However, if it cannot, it may break a word to fit the balloon. In languages like Japanese, Chinese, and Thai where spaces are not used to break words, insert a Unicode zero-width space character (0x200B) between characters to define logical word breaks.

Note	Set the character’s language ID before using the Speak method to ensure appropriate text display within the word balloon.

--

Character Properties

#Active Property

Description

Returns whether your application is the active client of the character and whether the character is topmost.

Syntax

agent.Characters (“CharacterID”).Active [= State]

Part�Description��state�An integer expression specifying the state of your client application.

0	Not the active client.

1	The active client.

2	The input-active client. (The topmost character.)��

Remarks

When multiple client applications share the same character, the active client of the character receives mouse input (for example, Microsoft Agent control Click or Drag events). Similarly, when multiple characters are displayed, the active client of the topmost character (also known as the input-active client) receives Command events.

You can use the Activate method to set whether your application is the active client of the character or to make your application the input active client (which also makes the character topmost).

See Also

Activate#Activate method

--

#AutoPopupMenu Property

Description

Returns or sets whether right-clicking the character or its taskbar icon automatically displays the character’s pop-up menu.

Syntax

agent.Characters (“CharacterID”).AutoPopupMenu [= boolean]

Part�Description��boolean�A Boolean expression specifying whether the server automatically displays the character’s pop-up menu on right-click.

True	(Default) Displays the menu on right-click.

False 	Does not display the menu on right-click.��

Remarks

By setting this property to False, you can create your own menu-handling behavior. To display the menu after setting this property to False, use the ShowPopupMenu method.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

See Also

ShowPopupMenu#ShowPopupMenu method

--

GUID Property

Description

Returns the unique identifier for the character.

Syntax

agent.Characters (“CharacterID”).GUID

Remarks

This property returns a string representing the internal identifier that the server uses to refer to uniquely identify the character. A character identifier is set when it is compiled with the Microsoft Agent Character Editor. The property is read-only.

--

HelpContextID Property

Description

Returns or sets an associated context number for the character. Used to provide context-sensitive Help for the character.

Syntax

agent.Characters (“CharacterID”).HelpContextID [= Number]

Part�Description��Number�An integer specifying a valid context number. ��

Remarks

To support context-sensitive Help for the character, assign the context number to the character you use for the associated Help topic when you compile your Help file. This property applies only to the client of the character; the setting does not affect other clients of the character or other characters of the client.

If you've created a Windows Help file for your application and set the character’s HelpFile property, Agent automatically calls Help when HelpModeOn is set to True and the user clicks the character. If there is a context number in the HelpContextID, Agent calls Help and searches for the topic identified by the current context number. The current context number is the value of HelpContextID for the character.

Note Building a Help file requires the Microsoft Windows Help Compiler.

See Also

HelpFile#HelpFile property, HelpModeOn#HelpModeOn property

--

#HelpFile Property

Description

Returns or sets the path and filename for a Microsoft Windows context-sensitive Help file supplied by the client application.

Syntax

agent.Characters (“CharacterID”).Helpfile [= Filename]

Part�Description��Filename�A string expression specifying the path and filename of the Windows Help file.��

Remarks

If you've created a Windows Help file for your application and set the character’s HelpFile property, Agent automatically calls Help when HelpModeOn is set to True and the user clicks the character or selects a command from its pop-up menu. If you specified a context number in the HelpContextID property of the selected command, Help displays a topic corresponding to the current Help context; otherwise it displays “No Help topic associated with this item.”

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

See Also

HelpModeOn#HelpModeOn property, HelpContextID#HelpContextIDcharobjprop property

--

#HelpModeOn Property

Description

Returns or sets whether context-sensitive Help mode is on for the character.

Syntax

agent.Characters (“CharacterID”).HelpModeOn [= boolean]

Part�Description��boolean�A Boolean expression specifying whether context-sensitive Help mode is on.

True	Help mode is on.

False 	(Default) Help mode is off.��

Remarks

When you set this property to True, the mouse pointer changes to the context-sensitive Help image when moved over the character or over the pop-up menu for the character. When the user clicks or drags the character or clicks an item in the character’s pop-up menu, the server triggers the HelpComplete event and exits Help mode.

In Help mode, the server does not send the Click, DragStart, DragComplete, and Command events, unless you set the AutoPopupMenu property to True. In that case, the server will send the Click event (does not exit Help mode), but only for the right mouse button to enable you to display the pop-up menu.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

See Also

HelpComplete#HelpComplete event

--

#LanguageID Property

Description

Returns or sets the language ID for the character.

Syntax

agent.Characters (“CharacterID”).LanguageID [= LanguageID]

Part�Description��LanguageID�A Long integer specifying the language ID for the character. The language ID (LANGID) for a character is a 16-bit value defined by Windows, consisting of a primary language ID and a secondary language ID. The following examples are values for languages supported by Microsoft Agent. To determine the value for other languages, see the Win32® SDK documentation.

Arabic	&H0401	Italian	&H0410�Basque	&H042D	Japanese	&H0411�Chinese (Simplified)	&H0804	Korean	&H0412�Chinese (Traditional)	&H0404	Norwegian	&H0414�Croatian	&H041A	Polish	&H0415�Czech	&H0405	Portuguese	&H0816�Danish	&H0406	Portuguese (Brazilian)	&H0416�Dutch	&H0413	Romanian	&H0418�English (British)	&H0809	Russian	&H0419�English (US)	&H0409	Slovakian	&H041B�Finnish	&H040B	Slovenian	&H0424�French	&H040C	Spanish	&H0C0A�German 	&H0407	Swedish	&H041D�Greek	&H0408	Thai	&H041E�Hebrew	&H040D	Turkish	&H041F�Hungarian	&H040E	��

Remarks

If you do not set the LanguageID for the character, its language ID will be the current system language ID if the corresponding Agent language DLL is installed, otherwise, the character’s language will be English (US).

This property also determines the language for word balloon text, the commands in the character’s pop-up menu, and the speech recognition engine. It also determines the default language for TTS output.

If you try to set the language ID for a character and the Agent language DLL for that language is not installed or a display font for the language ID is not available, Agent raises an error and LanguageID remains at its last setting.

Setting this property does not raise an error if there are no matching speech engines for the language. To determine if there is a compatible speech engine available for the LanguageID, check SRModeID or TTSModeID. If you do not set LanguageID, it will be set to the user default language ID setting.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

Note If you set LanguageID to a language that supports bidirectional text (such as Arabic or Hebrew), but the system running your application does not have bidirectional support installed, text in the word balloon will appear in logical rather than display order.

See Also

SRModeID#SRModeID property, TTSModeID#TTSModeID property

--

#OriginalHeight Property

Description

Returns an integer value that specifies the character’s original height.

Syntax

agent.Characters (“CharacterID”).OriginalHeight

Remarks

This property returns the character’s frame height as built with the Microsoft Agent Character Editor.

See Also

Height#Heightcharobjprop property, OriginalWidth#OriginalWidth property

--

OriginalWidth Property

Description

Returns an integer value that specifies the character’s original width.

Syntax

agent.Characters (“CharacterID”).OriginalWidth

Remarks

This property returns the character’s frame width as built with the Microsoft Agent Character Editor.

See Also

Width#Widthcharobjprop property, OriginalHeight#OriginalHeight property

--

#SRModeID Property

Description

Returns or sets the speech recognition engine the character uses.

Syntax

agent.Characters (“CharacterID”).SRModeID [= ModeID]

Part�Description��ModeID�A string expression that corresponds to the mode ID of a speech engine.��

Remarks

The property determines the speech recognition engine used by the character for speech input. The mode ID for a speech recognition engine is a formatted string defined by the speech vendor that uniquely identifies the engine. For more information, see Microsoft Speech Engines/workshop/imedia/agent/speechengines.asp.

If you specify a mode ID for a speech engine that isn’t installed, if the user has disabled speech recognition (in the Microsoft Agent property sheet), or if the language of the specified speech engine doesn’t match the character’s LanguageID setting, the server raises an error.

If you query this property and haven’t already (successfully) set the speech recognition engine, the server returns the mode ID of the engine that SAPI returns based on the character’s LanguageID setting. If you haven’t set the character’s LanguageID, then Agent returns the mode ID of the engine that SAPI returns based on the user's default language ID setting. If there is no matching engine, the server returns an empty string (“”). Querying this property does not require that SpeechInput.Enabled be set to True. However, if you query the property when speech input is disabled, the server returns an empty string.

When speech input is enabled (in the Advanced Character Options window), querying or setting this property will load the associated engine (if it is not already loaded), and start speech services. That is, the Listening key is available, and the Listening Tip is displayable. (The Listening key and Listening Tip are enabled only if they are also enabled in Advanced Character Options.) However, if you query the property when speech is disabled, the server does not start speech services.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

Microsoft Agent’s speech engine requirements are based on the Microsoft Speech API. Engines supporting Microsoft Agent’s SAPI requirements can be installed and used with Agent.

Note This property also returns the empty string if you have no compatible sound support installed on your system.

Note Querying this property does not typically return an error. However, if the speech engine takes an abnormally long time to load, you may get an error indicating that the query timed out.

See Also

LanguageID#LanguageID property

SRStatus Property

Description

Returns whether speech input can be started for the character.

Syntax

agent.Characters (“CharacterID”).SRStatus

Value�Description��0�Conditions support speech input.��1�There is no audio input device available on this system. (Note that this does not detect whether or not a microphone is installed; it can only detect whether the user has a properly installed input-enabled sound card with a working driver.)��2�Another client is the active client of this character, or the current character is not topmost.��3�The audio input or output channel is currently busy, an application is using audio. ��4�An unspecified error occurred in the process of initializing the speech recognition subsystem. This includes the possibility that there is no speech engine available matching the character’s language setting.��5�The user has disabled speech input in the Advanced Character Options.��6�An error occurred in checking the audio status, but the cause of the error was not returned by the system.��

Remarks

This property returns the conditions necessary to support speech input, including the status of the audio device. You can check this property before you call the Listen method to better ensure its success.

When speech input is enabled in the Agent property sheet (Advanced Character Options), querying this property will load the associated engine, if it is not already loaded, and start speech services. That is, the Listening key is available, and the Listening Tip is automatically displayable. (The Listening key and Listening Tip are only enabled if they are also enabled in Advanced Character Options.) However, if you query the property when speech is disabled, the server does not start speech services.

This property only applies to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

See Also

Listen#Listen method

--

TTSModeID Property

Description

Returns or sets the TTS engine mode used for the character.

Syntax

agent.Characters (“CharacterID”).TTSModeID [= ModeID]

Part�Description��ModeID�A string expression that corresponds to the mode ID of a speech engine.��

Remarks

This property determines the TTS (text-to-speech) engine mode ID for a character’s spoken output. The mode ID for a TTS engine is a formatted string defined by the speech vendor that uniquely identifies the engine’s mode. For more information, see Microsoft Speech Engines/workshop/imedia/agent/speechengines.asp.

Setting this property overrides the server’s attempt to load an engine based on the character’s compiled TTS setting and the character’s current LanguageID setting. However, if you specify a mode ID for an engine that isn’t installed or if the user has disabled speech output in the Microsoft Agent property sheet (AudioOutput.Enabled = False), the server raises an error.

If you do not (or have not successfully) set a TTS mode ID for the character, the server checks to see if the character’s compiled TTS mode setting matches the character’s LanguageID setting, and that the associated TTS engine is installed. If so, the TTS mode used by the character for spoken output and this property returns that mode ID. If not, the server requests a compatible SAPI speech engine that matches the LanguageID of the character, as well as the gender and age set for the character’s compiled mode ID. If you have not set the character’s LanguageID, its LanguageID is the current user language. If no matching engine can be found, querying for this property returns an empty string for the engine’s mode ID. Similarly, if you query this property when the user has disabled speech output in the Microsoft Agent property sheet (AudioOutput.Enabled = False), the value will be an empty string.

Querying or setting this property will load the associated engine (if it is not already loaded). However, if the engine specified in the character’s compiled TTS setting is installed and matches the character’s language ID setting, the engine will be loaded when the character loads.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

Microsoft Agent’s speech engine requirements are based on the Microsoft Speech API. Engines supporting Microsoft Agent’s SAPI requirements can be installed and used with Agent.

Note This property also returns the empty string if you have no compatible sound support installed on your system.

Note Setting the TTSModeID can fail if Speech.dll is not installed and the engine you specify does not match the character’s compiled TTS mode setting.

Note Querying this property does not typically return an error. However, if the speech engine takes an abnormally long time to load, you may get an error indicating that the query timed out.

See Also

LanguageID#LanguageID property

--

Version Property

Description

Returns version of the character.

Syntax

agent.Characters (“CharacterID”).Version

Remarks

The Version property returns a string that corresponds to the version of the standard animation set definition for which the character was compiled. The character’s version number is automatically set when you build it with the Microsoft Agent Character Editor.

--

Commands Objects Properties

The server supports the following properties for the Commands collection:

Caption#Captioncommsobjprop, Count#Count, DefaultCommand#DefaultCommand, FontName#FontNamecommsobjprop, FontSize#FontSizecommsobjprop, GlobalVoiceCommandsEnabled#GlobalVoiceCommandsEnabled, HelpContextID#HelpContextIDcommsobjprop, Visible#Visiblecommsobjprop, Voice#Voicecommsobjprop, VoiceCaption#VoiceCaptioncommsobjprop

An entry for the Commands collection can appear in both the pop-up menu and the Voice Commands Window for a character. To make this entry appear in the pop-up menu, set its Caption property. To include the entry in the Voice Commands Window, set its VoiceCaption property. (For backward compatibility, if there is no VoiceCaption, the Caption setting is used)

The following table summarizes how the properties of a Commands object affect the entry’s presentation:

Caption Property�Voice-Caption Property�Voice Property �Visible Property�Appears in �Character’s Pop-up Menu�Appears in �Voice Commands Window��Yes�Yes�Yes�True�Yes, using Caption�Yes, using VoiceCaption��Yes�Yes�No1�True�Yes, using Caption�No��Yes�Yes�Yes�False�No�Yes, using VoiceCaption��Yes�Yes�No1�False�No�No��No1�Yes�Yes�True�No�Yes, using VoiceCaption��No1�Yes�Yes�False�No�Yes, using VoiceCaption��No1�Yes�No1�True�No�No��No1�Yes�No1�False�No�No��Yes�No1�Yes�True�Yes, using Caption�Yes, using Caption��Yes�No1�No1�True�Yes�No��Yes�No1�Yes�False�No�Yes, using Caption��Yes�No1�No1�False�No�No��No1�No1�Yes�True�No�No2��No1�No1�Yes�False�No�No2��No1�No1�No1�True�No�No��No1�No1�No1�False�No�No��1If the property setting is null. In some programming languages, an empty string may not be interpreted as the same as a null string.

2The command is still voice-accessible, and appears in the Voice Commands Window as “(command undefined)”.

DefaultCommand Property

Description

Returns or sets the default command of the Commands object.

Syntax

agent.Characters (“CharacterID”).Commands.DefaultCommand [= string]

Part�Description��string�A string value identifying the name (ID) of the Command.��

Remarks

This property enables you to set a Command in your Commands collection as the default command, rendering it bold. This does not actually change command handling or double-click events.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

--

FontName Property

Description

Returns or sets the font used in the character’s pop-up menu.

Syntax

agent.Characters (“CharacterID”).Commands.FontName [= Font]

Part�Description��Font�A string value corresponding to the font’s name.��

Remarks

The FontName property defines the font used to display text in the character’s pop-up menu. The default value for the font setting is based on the menu font setting for the character’s LanguageID setting, or -- if that's not set -- the user default language ID setting.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

--

FontSize Property

Description

Returns or sets the font size used in the character’s pop-up menu.

Syntax

agent.Characters (“CharacterID”).Commands.FontSize [= Points]

Part�Description��Points�A Long integer value specifying the font size in points.��

Remarks

The FontSize property defines the point size of the font used to display text in the character’s pop-up menu. The default value for the font setting is based on the menu font setting for the character’s LanguageID setting, or -- if that's not set -- the user default language setting.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

--

GlobalVoiceCommandsEnabled Property

Description

Returns or sets whether voice is enabled for Agent’s global commands.

Syntax

agent.Characters (“CharacterID”).Commands.GlobalVoiceCommandsEnabled �[= boolean]

Part�Description��boolean�A Boolean expression that indicates whether voice parameters for Agent’s global commands are enabled.

True	(Default) Voice parameters are enabled.

False 	Voice parameters are disabled.��Remarks

Microsoft Agent automatically adds voice parameters (grammar) for opening and closing the Voice Commands Window and for showing and hiding the character. If you set GlobalVoiceCommandsEnabled to False, Agent disables any voice parameters for these commands as well as the voice parameters for the Caption of other client’s Commands objects. This enables you to eliminate these from your client’s current active grammar. However, because this potentially blocks voice access to other clients, reset this property to True after processing the user’s voice input.

Disabling the property does not affect the character’s pop-up menu. The global commands added by the server will still appear. You cannot remove them from the pop-up menu.

--

#HelpContextID Property

Description

Returns or sets an associated context number for the Commands object. Used to provide context-sensitive Help for the Commands object.

Syntax

agent.Characters (“CharacterID”).Commands.HelpContextID [= Number]

Part�Description��Number�An integer specifying a valid context number. ��

Remarks

If you've created a Windows Help file for your application and set the character’s HelpFile property, Agent automatically calls Help when HelpModeOn is set to True and the user selects the Commands object. If you set a context number for HelpContextID, Agent calls Help and searches for the topic identified by that context number.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

Note Building a Help file requires the Microsoft Windows Help Compiler.

See Also

HelpFile#HelpFile property

--

#VoiceCaption Property

Description

Returns or sets the text displayed for the Commands object in the Voice Commands Window.

Syntax

agent.Characters (“CharacterID”).Commands.VoiceCaption [= string]

Part�Description��string�A string expression that evaluates to the text displayed.��

Remarks

If you set the Voice property of your Commands collection, you will typically also set its VoiceCaption property. The VoiceCaption text setting appears in the Voice Commands Window when your client application is input-active and the character is visible. If this property is not set, the setting for the Commands collection’s Caption property determines the text displayed. When neither the VoiceCaption or Caption property is set, then commands in the collection appear in the Voice Commands Window under “(undefined command)” when your client application becomes input-active.

The VoiceCaption setting also determines the text displayed in the Listening Tip to indicate the commands for which the character listens.

See Also

Caption#Captioncommsobjprop property

--

Command Properties

The following table summarizes how the properties of a Command object affect its presentation.

Caption Property�Voice-Caption Property�Voice Property �Visible Property�Enabled Property�Appears in Character’s Pop-up Menu�Appears in Commands Window��Yes�Yes�Yes�True�True�Normal, using Caption�Yes, using VoiceCaption��Yes�Yes�Yes�True�False�Disabled, using Caption�No��Yes�Yes�Yes�False�True�Does not appear�Yes, using VoiceCaption��Yes�Yes�Yes�False�False�Does not appear�No��Yes�Yes�No1�True�True�Normal, using Caption�No��Yes�Yes�No1�True�False�Disabled, using Caption�No��Yes�Yes�No1�False�True�Does not appear�No��Yes�Yes�No1�False�False�Does not appear�No��No1�Yes�Yes�True �True�Does not appear�Yes, using VoiceCaption��No1�Yes�Yes�True�False�Does not appear�No��No1�Yes�Yes�False�True�Does not appear�Yes, using VoiceCaption��No1�Yes�Yes�False�False�Does not appear�No��No1�Yes�No1�True�True�Does not appear�No��No1�Yes�No1�True�False�Does not appear�No��No1�Yes�No1�False�True�Does not appear�No��No1�Yes�No1�False�False�Does not appear�No��Yes�No1�Yes�True�True�Normal, using Caption�Yes, using Caption��Yes�No1�Yes�True�False�Disabled, using Caption�No��Yes�No1�Yes�False�True�Does not appear�Yes, using Caption��Yes�No1�Yes�False�False�Does not appear�No��Yes�No1�No1�True�True�Normal, using Caption�No��Yes�No1�No1�True�False�Disabled, using Caption�No��Yes�No1�No1�False�True�Does not appear�No��Yes�No1�No1�False�False�Does not appear�No��No1�No1�Yes�True �True�Does not appear�No2��No1�No1�Yes�True�False�Does not appear�No��No1�No1�Yes�False�True�Does not appear�No2��No1�No1�Yes�False�False�Does not appear�No��No1�No1�No1�True�True�Does not appear�No��No1�No1�No1�True�False�Does not appear�No��No1�No1�No1�False�True�Does not appear�No��No1�No1�No1�False�False�Does not appear�No��1If the property setting is null. In some programming languages, an empty string may not be interpreted as the same as a null string.

2The command is still voice-accessible.

HelpContextID Property

Description

Returns or sets an associated context number for the Command object. Used to provide context-sensitive Help for the Command object.

Syntax

agent.Characters (“CharacterID”).Commands("name").HelpContextID [= number]

Part�Description��number�An integer specifying a valid context number. ��

Remarks

If you've created a Windows Help file for your application and set the character’s HelpFile property to the file, Agent automatically calls Help when HelpModeOn is set to True and the user selects the command. If you set a context number in the HelpContextID, Agent calls Help and searches for the topic identified by the current context number. The current context number is the value of HelpContextID for the command.

This property only applies to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

Note Building a Help file requires the Microsoft Windows Help Compiler.

See Also

HelpFile property

--

VoiceCaption Property

Description

Sets or returns the text displayed for the Command object in the Voice Commands Window.

Syntax

agent.Characters (“CharacterID”).Commands(“Name”).VoiceCaption [= string]

Value�Description��string�A string expression that evaluates to the text displayed.��

Remarks

If you define a Command object in a Commands collection and set its Voice property, you will typically also set its VoiceCaption property. This text will appear in the Voice Commands Window when your client application is input active. If this property is not set, the setting for the Caption property determines the text displayed. When neither the VoiceCaption or Caption property is set, the command does not appear in the Voice Commands Window.

This property only applies to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

See Also

Caption property

--

Balloon Properties

Style Property

Description

Returns or sets the character’s word balloon output style.

Syntax

agent.Characters (“CharacterID”).Balloon.Style [= Style]

Part�Description��Style�An integer that represents the balloon’s output style. The style setting is a bit field with bits corresponding to: balloon-on (bit 0), size-to-text (bit 1), auto-hide (bit 2), auto-pace (bit 3), number of characters per lines (bits 16-23), and number of lines (bits 24-31).��

Remarks

When the balloon-on style bit is set to 1, the word balloon appears when a Speak or Think method is used, unless the user overrides this setting in the Microsoft Agent property sheet. When set to 0, a balloon does not appear.

When the size-to-text style bit is set to 1, the word balloon automatically sizes the height of the balloon to the current size of the text for the Speak or Think statement. When set to 0, the balloon’s height is based on the NumberOfLines property setting. If this style bit is set to 1 and you attempt to set the NumberOfLines property, Agent raises an error.

When the auto-hide style bit is set to 1, the word balloon automatically hides when spoken output completes. When set to 0, the balloon remains displayed until the next Speak or Think call, the character is hidden, or the user clicks or drags the character.

When the auto-pace style bit is set to 1, the word balloon paces the output based on the current output rate, for example, one word at a time. When output exceeds the size of the balloon, the former text is automatically scrolled. When set to 0, all text included in a Speak or Think statement is displayed at once.

To retrieve just the value of the bottom four bits, And the value returned by Style with 255. To set a bit value, Or the value returned with the value of the bits you want set. To turn a bit off, And the value returned with one’s complement of the bit:

 Const BalloonOn = 1

 ‘ Turn the word balloon off

 Genie.Balloon.Style = Genie.Balloon.Style And (Not BalloonOn)

 Genie.Speak “No balloon”

 ‘ Turn the word balloon on

 Genie.Balloon.Style = Genie.Balloon.Style Or BalloonOn

 Genie.Speak “Balloon”

The Style property also returns the number of characters per line in the lower byte of the upper word and the number of lines in the high byte of the upper word. While this can be more easily read using the CharsPerLine and NumberOfLines properties, the Style property also enables you to set those values. For example, to change the number of lines, OR the existing value of the Style property with the product of the new value times 2^24. To set the number of characters per line, OR the existing value with the product of the new value times 2^16.

 ‘ Set the number of lines to 4

 Genie.Balloon.Style = Genie.Balloon.Style OR (4*(2^24))

 ‘ Set the number of characters per line to 16

 Genie.Balloon.Style = Genie.Balloon.Style OR (16*(2^16))

The Style property can be set even if the user has disabled balloon display using the Microsoft Agent property sheet. However, the values for the number of lines must be between 1 and 128 and the number characters per line must be between 8 and 255. If you provide an invalid value for the Style property, Agent will raise an error.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

The defaults for these style bits are based on their settings when the character is compiled with the Microsoft Agent Character Editor.

--

AnimationNames Collection

The AnimationNames collection is a special collection that contains the list of animation names compiled for a character. You can use the collection to enumerate the names of the animations for a character. For example, in Visual Basic or VBScript (2.0 or later) you can access these names using the For Each…Next statements:

 For Each Animation in Genie.AnimationNames

 Genie.Play Animation

 Next

Items in the collection have no properties, so individual items cannot be accessed directly.

For .ACF characters, the collection returns all the animations that have been defined for the character, not just the ones that have been retrieved with the Get method.

--

AudioOutput Properties

Status Property

Description

Returns the status of the audio output channel.

Syntax

agent.AudioOutput.Status

Value�Description��0�The audio output channel is available (not busy).��1�There is no support for audio output; for example, because there is no sound card.��2�The audio output channel can’t be opened (is busy); for example, because some other application is playing audio.��3�The audio output channel is busy because the server is processing user speech input ��4�The audio output channel is busy because a character is currently speaking.��5�The audio output channel is not busy, but it is waiting for user speech input. ��6�There was some other (unknown) problem in attempting to access the audio output channel.��

Remarks

This setting enables your client application to query the audio output channel, returning an Integer value that indicates the status of the audio output channel. You can use this to determine whether it is appropriate to have your character speak or whether it is appropriate to try to turn on listening mode (using the Listen method).

See Also

ListenComplete event

--

Server API Additions

IAgentEx

IAgentEx derives from the IAgent interface. It includes all the IAgent methods as well as provides access to additional functions.

Methods in Vtable Order

IAgentEx Methods�Description��ShowDefaultCharacterProperties�Displays the default character properties.��GetVersion�Returns the version number for Microsoft Agent (server).��

#IAgentEx::ShowDefaultCharacterProperties

HRESULT ShowDefaultCharacterProperties(

 short x, // x-coordinate of window

 short y, // y-coordinate of window

 long bUseDefault // default position flag

);

Displays default character properties window.

• Returns S_OK to indicate the operation was successful.

x

The x-coordinate of the window in pixels, relative to the screen origin (upper left).

y

The y-coordinate of the window in pixels, relative to the screen origin (upper left).

bUseDefault

Default position flag. If this parameter is True, Microsoft Agent displays the property sheet window for the default character at the last location it appeared.

Note For Windows NT® 5.0, it may be necessary to call the new AllowSetForegroundWindow API to ensure that this window becomes the foreground window. For more information about setting the foreground window under Windows 2000, see the Win32® documentation.

See also IAgentNotifySinkEx::DefaultCharacterChange#IAgentNotifySinkEx::DefaultCharacterChange

#IAgentEx::GetVersion

HRESULT GetVersion(

 short * psMajor, // address of major version

 short * psMinor // address of minor version

);

Retrieves the version number of Microsoft Agent server.

• Returns S_OK to indicate the operation was successful.

psMajor

Address of a variable that receives the major version.

psMinor

Address of a variable that receives the minor version.

#IAgentCharacterEx

IAgentCharacterEx derives from the IAgentCharacter interface. It includes all the IAgentCharacter methods as well as provides access to additional functions.

Methods in Vtable Order

IAgentCharacterEx Methods�Description��ShowPopupMenu�Displays the pop-up menu for the character.��SetAutoPopupMenu�Sets whether the server automatically displays the character’s pop-up menu.��GetAutoPopupMenu�Returns whether the server automatically displays the character’s pop-up menu.��GetHelpFileName�Returns the Help filename for the character.��SetHelpFileName�Sets the Help filename for the character.��SetHelpModeOn�Sets Help mode on.��GetHelpModeOn�Returns whether Help mode is on.��SetHelpContextID�Sets the HelpContextID for the character.��GetHelpContextID�Returns the HelpContextID for the character.��GetActive�Returns the active state for the character.��Listen�Sets the listening state for the character.��SetLanguageID�Sets the language ID for the character.��GetLanguageID�Returns the language ID for the character.��GetTTSModeID�Returns the TTS mode ID set for the character.��SetTTSModeID�Sets the TTS mode ID for the character.��GetSRModeID�Returns the current speech recognition engine’s mode ID.��SetSRModeID�Sets the speech recognition engine.��GetGUID�Returns the character’s identifier.��GetOriginalSize�Returns the original size of the character frame.��Think�Displays the specified text in the character’s “thought” balloon.��GetVersion�Returns the version of the character.��GetAnimationNames�Returns the names of the animations for the character.��GetSRStatus�Returns the conditions necessary to support speech input.��

#IAgentCharacterEx::GetActive

HRESULT GetActive(

 short * psState // address of active state setting

);

Retrieves whether your client application is the active client of the character and whether the character is topmost.

• Returns S_OK to indicate the operation was successful.

psState

Address of a variable that receives one of the following values for the state setting:

const unsigned short ACTIVATE_NOTACTIVE = 0;�Your client is not the active client of the character.��const unsigned short ACTIVATE_ACTIVE = 1;�Your client is the active client of the character.��const unsigned short ACTIVATE_INPUTACTIVE = 2;�Your client is input-active (active client of the topmost character).��This setting lets you know whether you are the active client of the character or whether your character is the input active character. When multiple client applications share the same character, the active client of the character receives mouse input (for example, Microsoft Agent control click or drag events). Similarly, when multiple characters are displayed, the active client of the topmost character (also known as the input-active client) receives IAgentNotifySink::Command events.

Use the Activate method to set whether your application is the active client of the character or to make your application the input active client (which also makes the character topmost).

See also IAgentCharacter::Activate#IAgentCharacter::Activate, IAgentNotifySinkEx::ActiveClientChange#IAgentNotifySinkEx::ActiveClientChange

#IAgentCharacterEx::GetAnimationNames

HRESULT GetAnimationNames(

 IUnknown ** punkEnum // address of IUnknown inteface

);

Retrieves the animation names for a character.

• Returns S_OK to indicate the operation was successful.

IUnknown

The address of the IUnknown interface for the character’s animation collection.

This function enables you to enumerate the names of the animations for a character. Items in the collection have no properties, so individual items cannot be accessed directly. To access the collection, query punkEnum for the IEnumVARIANT interface:

	IEnumVARIANT pEnum;

	VARIANT vAnimName;

	DWORD dwRetrieved;

	hRes = punkEnum->QueryInterface(IID_IEnumVARIANT, (LPVOID *)&pEnum);

	if (SUCCEEDED(hRes)) {

		while (TRUE) {

			hRes = pEnum->Next(1, &vAnimName, &dwRetrieved);

			if (hRes != NOERROR)

				break;

			// vAnimName.bstrVal is the animation name

			VariantClear(&vAnimName);

		}

		pEnum->Release();

	}

	punkEnum->Release();

Note For ACF characters, the collection returns all the animations that have been defined for the character, adding to the ones that have been retrieved with the Get method.

#IAgentCharacterEx::GetAutoPopupMenu

HRESULT GetAutoPopupMenu(

 long * pbAutoPopupMenu // address of auto pop-up menu display setting

);

Retrieves whether the server automatically displays the character’s pop-up menu.

• Returns S_OK to indicate the operation was successful.

pbAutoPopupMenu

Address of a variable that receives True if the Microsoft Agent server automatically handles displaying the character’s pop-up menu and False if not.

When this property is set to False, your application must display the pop-up menu using IAgentCharacter::ShowPopupMenu method.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

See also IAgentCharacterEx::SetAutoPopupMenu#IAgentCharacterEx::SetAutoPopupMenu, IAgentCharacterEx::ShowPopupMenu#IAgentCharacterEx::ShowPopupMenu

#IAgentCharacterEx::GetGUID

HRESULT GetGUID(

 BSTR * pbszGUID // address of character’s ID

);

Retrieves the unique ID for the character.

• Returns S_OK to indicate the operation was successful.

pbszGUID

Address of a BSTR that receives the ID for the character.

The property returns a string representation of the GUID (formatted with braces and dashes) that the server uses to uniquely identify the character. A character identifier is set when it is compiled with the Microsoft Agent Character Editor. The property is read-only.

#IAgentCharacterEx::GetHelpContextID

HRESULT GetHelpContextID(

 long * pulHelpID // address of character’s help topic ID

);

Retrieves the HelpContextID for the character.

• Returns S_OK to indicate the operation was successful.

pulHelpID

Address of a variable that receives the context number of the help topic for the character.

If you've created a Windows® Help file for your application and set the character’s HelpFile property, Microsoft Agent automatically calls Help when HelpModeOn is set to True and the user selects the character. If there is a context number in the HelpContextID, Agent calls Help and searches for the topic identified by the current context number. The current context number is the value of HelpContextID for the character.

IAgentCharacterEx::GetHelpContextID returns the HelpContextID you set for the character. It does not return the HelpContextID set by other clients.

Note Building a Help file requires the Microsoft Windows Help Compiler.

See also IAgentCharacterEx::SetHelpContextID#IAgentCharacterEx::SetHelpContextID, IAgentCommands::SetHelpModeOn#IAgentCommands::SetHelpModeOn, IAgentCharacterEx::SetHelpFileName#IAgentCharacterEx::SetHelpFileName

#IAgentCharacterEx::GetHelpFileName

HRESULT GetHelpFileName(

 BSTR * pbszName // address of Help filename

);

Retrieves the HelpFileName for a character.

• Returns S_OK to indicate the operation was successful.

pbszName

Address of a variable that receives the Help filename for the character.

If you've created a Windows Help file for your application and set the character’s HelpFile property, Microsoft Agent automatically calls Help when HelpModeOn is set to True and the user clicks the character or selects a command from its pop-up menu. If there is a context number in the selected command's HelpContextID property, Help displays a topic corresponding to the current Help context; otherwise it displays “No Help topic associated with this item.”

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

Note Building a Help file requires the Microsoft Windows Help Compiler.

See also IAgentCommandsEx::SetHelpContextID#IAgentCommandsEx::SetHelpContextID, IAgentCharacterEx::SetHelpModeOn#IAgentCharacterEx::SetHelpModeOn, IAgentCharacterEx::SetHelpFileName#IAgentCharacterEx::SetHelpFileName

#IAgentCharacterEx::GetHelpModeOn

HRESULT GetHelpModeOn(

 long * pbHelpModeOn // address of help mode setting

);

Retrieves whether context-sensitive Help mode is on for the character.

• Returns S_OK to indicate the operation was successful.

pbHelpModeOn

Address of a variable that receives True if Help mode is on for the character and False if not.

When this property is set to True, the mouse pointer changes to the context-sensitive Help image when moved over the character or over the pop-up menu for the character. When the user clicks or drags the character or clicks an item in the character’s pop-up menu, the server triggers the IAgentNotifySinkEx::HelpComplete event and exits Help mode.

In Help mode, the server does not send the IAgentNotifySink::Click, IAgentNotifySink::DragStart, IAgentNotifySink::DragComplete, and IAgentNotifySink::Command events, unless GetAutoPopupMenu property returns True. In that case, the server will send the IAgentNotifySink::Click event (does not exit Help mode), but only for the right mouse button to enable you to display the pop-up menu.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

See also IAgentCharacterEx::SetHelpModeOn#IAgentCharacterEx::SetHelpModeOn

#IAgentCharacterEx::GetLanguageID

HRESULT GetLanguageID(

 long * plangID // address of language ID setting

);

Retrieves the language ID set for the character.

• Returns S_OK to indicate the operation was successful.

plangID

Address of a variable that receives the language ID setting for the character.

A Long integer specifying the language ID for the character. The language ID (LANGID) for a character is a 16-bit value defined by Windows, consisting of a primary language ID and a secondary language ID. The following examples are values for some languages. To determine the values other languages, see the Win32 SDK documentationhttp://msdn.microsoft.com/developer/sdk/default.htm.

Arabic (Saudi)�0x0401�Italian�0x0410��Basque�0x042d�Japanese�0x0411��Chinese (Simplified)�0x0804�Korean�0x0412��Chinese (Traditional)�0x0404�Norwegian�0x0414��Croatian�0x041A�Polish�0x0415��Czech�0x0405�Portuguese�0x0816��Danish�0x0406�Portuguese (Brazilian)�0x0416��Dutch�0x0413�Romanian�0x0418��English (British)�0x0809�Russian�0x0419��English (US)�0x0409�Slovakian�0x041B��Finnish�0x040B�Slovenian�0x0424��French�0x040C�Spanish�0x0C0A��German� 0x0407�Swedish�0x041D��Greek�0x0408�Thai�0x041E��Hebrew�0x040D�Turkish�0x041F��Hungarian�0x040E����If you do not set this language ID for the character, the character’s language ID will be the current system language ID.

This setting also determines the language for TTS output, word balloon text, the commands in the character’s pop-up menu, and speech recognition engine. To determine if there is a compatible speech recognition engine available for the character’s language, use IAgentCharacterEx:GetSRModeID or IAgentCharacterEx::GetTTSModeID.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

Note If the language ID is set to a language that supports bidirectional text (such as Arabic or Hebrew), but the system running your application does not have bidirectional support installed, text will appear in the word balloon in logical rather than display order.

See also IAgentCharacterEx:SetLanguageID#IAgentCharacterEx:SetLanguageID, IAgentCharacterEx:GetSRModeID#IAgentCharacterEx:GetSRModeID, IAgentCharacterEx::GetTTSModeID#IAgentCharacterEx::GetTTSModeID

#IAgentCharacterEx::GetOriginalSize

HRESULT GetOriginalSize(

 long * plWidth, // address of variable for character width

 long * plHeight // address of variable for character height

);

Retrieves the original size of the character’s animation frame.

• Returns S_OK to indicate the operation was successful.

plWidth

Address of a variable that receives the original width of the character animation frame in pixels.

plHeight

Address of a variable that receives the original height of the character animation frame in pixels.

This call returns the original size of the character frame as built in the Microsoft Agent Character Editor.

See also IAgentCharacter::GetSize#IAgentCharacter::GetSize

#IAgentCharacterEx::GetSRModeID

HRESULT GetSRModeID(

 BSTR * pbszModeID // address of speech recognition engine ID

);

Retrieves the mode ID of the speech recognition engine set for the character.

• Returns S_OK to indicate the operation was successful.

pbszModeID

Address of a BSTR that receives the mode ID setting of the speech recognition engine for the character.

This setting returns the engine set for a character’s speech input. The mode ID for a speech recognition engine is a string representation of the GUID (formatted with braces and dashes) by the speech vendor uniquely identifying the engine. For more information, see the Microsoft Speech SDK documentationhttp://research.microsoft.com/demos.htm.

If you do not set a speech recognition engine mode ID for the character, the server returns an engine that matches the character’s language setting (using Microsoft Speech API interfaces). If there is no matching speech recognition engine available for the character, the server returns a null (empty) string.

When speech input is enabled (in the Advanced Character Options window), querying or setting this property will load the associated engine (if it is not already loaded), and start speech services. That is, the Listening key is available, and the Listening Tip is displayable. (The Listening key and Listening Tip are enabled only if they are also enabled in Advanced Character Options.) However, if you query the property when speech is disabled, the server does not start speech services and it returns a null string (empty string).

This function returns only the setting for your client application’s use of the character; the setting does not reflect other clients of the character or other characters of your client application.

This function does not fail if the IAgentSpeechInputProperties::GetEnabled returns False.

Microsoft Agent’s speech engine requirements are based on the Microsoft Speech API. Engines supporting Microsoft Agent’s SAPI requirements can be installed and used with Agent.

See also IAgentCharacterEx:SetSRModeID#IAgentCharacterEx:SetSRModeID

#IAgentCharacterEx::GetSRStatus

HRESULT GetSRStatus(

 long * plStatus // address of the speech input status

);

Retrieves the status of the condition necessary to support speech input.

• Returns S_OK to indicate the operation was successful.

plStatus

Address of a variable that receives one of the following values for the state setting:

const unsigned long �LISTEN_STATUS_CANLISTEN = 0;�Conditions support speech input.��const unsigned long �LISTEN_STATUS_NOAUDIO = 1;�There is no audio input device available on this system. (Note that this does not detect whether a microphone is installed; it can only detect whether the user has a properly installed input-enabled sound card with a working driver.)��const unsigned long �LISTEN_STATUS_NOTTOPMOST = 2;�Another client is the active client of this character, or the current character is not topmost.��const unsigned long LISTEN_STATUS_CANTOPENAUDIO = 3;�The audio input or output channel is currently busy, some other application is using audio. ��const unsigned long LISTEN_STATUS_COULDNTINITIALIZESPEECH = 4;�An unspecified error occurred in the process of initializing the speech recognition subsystem. This includes the possibility that there is no speech engine available matching the character’s language setting.��const unsigned long �LISTEN_STATUS_SPEECHDISABLED = 5;�The user has disabled speech input in the Advanced Character Options window.��const unsigned long �LISTEN_STATUS_ERROR = 6;�An error occurred in checking the audio status, but the cause of the error was not returned by the system.��This function enables you to query whether current conditions support speech recognition input, including the status of the audio device. If your application uses the IAgentCharacterEx::Listen method, you can use this function to better ensure that the call will succeed. Calling this method also loads the speech engine if it is not already loaded. However, it does not turn on Listening mode.

When speech input is enabled in the Agent property sheet (Advanced Character Options), querying the status will load the associated engine (if it is not already loaded), and start speech services. That is, the Listening key is available, and the Listening Tip is displayable. (The Listening key and Listening Tip are enabled only if they are also enabled in Advanced Character Options.) However, if you query the property when speech is disabled, the server does not start speech services.

This function returns only the setting for your client application’s use of the character; the setting does not reflect other clients of the character or other characters of your client application.

#IAgentCharacterEx::GetTTSModeID

HRESULT GetTTSModeID(

 BSTR * pbszModeID // address of TTS engine ID

);

Retrieves the mode ID of the TTS engine set for the character.

• Returns S_OK to indicate the operation was successful.

pbszModeID

Address of a BSTR that receives the mode ID setting of the TTS engine for the character.

This setting returns the TTS (text-to-speech) engine mode ID for a character’s spoken output. The mode ID for a TTS engine is a string representation of the GUID (formatted with braces and dashes) defined by the speech vendor uniquely identifying the engine. For more information, see the Microsoft Speech SDK documentationhttp://research.microsoft.com/demos.htm. Querying this property will load the associated engine if it is not already loaded.

If you do not set a TTS engine mode ID for the character, the server attempts to return an engine that matches (using Microsoft Speech API interfaces) the character’s compiled TTS setting and the character’s current language setting. If these are different, then the character’s language setting overrides its authored mode setting. If you have not set the character’s language setting, the character’s language is the user default language ID, and the server attempts the match based on that language ID.

This function does not fail if the IAgentAudioObjectProperties::GetEnabled returns False.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

Microsoft Agent’s speech engine requirements are based on the Microsoft Speech API. Engines supporting Microsoft Agent’s SAPI requirements can be installed and used with Agent.

See also IAgentCharacterEx:SetTTSModeID#IAgentCharacterEx:SetTTSModeID

#IAgentCharacterEx::GetVersion

HRESULT GetVersion(

 short * psMajor, // address of major version

 short * psMinor // address of minor version

);

Retrieves the version number of the character standard animation set.

• Returns S_OK to indicate the operation was successful.

psMajor

Address of a variable that receives the major version.

psMinor

Address of a variable that receives the minor version.

The standard animation set version number is automatically set when you build it with the Microsoft Agent Character Editor.

#IAgentCharacterEx::Listen

HRESULT Listen(

 long bListen // listening mode flag

);

Turns Listening mode (speech recognition input) on or off.

• Returns S_OK to indicate the operation was successful.

bListen

Listening mode flag. If this parameter is True, the Listening mode is turned on; if False, Listening mode is turned off.

Setting this method to True enables the Listening mode (turns on speech recognition) for a fixed period of time. While you cannot set the value of the time-out, you can turn off Listening mode before the time-out expires. In addition, if the Listening mode is already on because you (or another client) successfully set the method to True before the time-out expires, the method succeeds and resets the time-out. However, if Listening mode is already on because the user is pressing the Listening key, the method succeeds, but the time-out is ignored and the Listening mode ends based on the user’s interaction with the Listening key.

This method will succeed only when called by the input-active client. Therefore, the method will fail if your client is not the active client of the topmost character. The method will also fail if you attempt to set the method to False and the user is pressing the Listening key. It can also fail if there is no compatible speech engine available that matches the character’s language ID setting or the user has disabled speech input using the Microsoft Agent property sheet. However, the method will not fail if the audio device is busy.

When you successfully set this method to True, the server triggers the IAgentNotifySinkEx::ListeningState event. The server also sends IAgentNotifySinkEx::ListeningState when the Listening mode time-out completes or when you set IAgentCharacterEx::Listen to False.

This method does not automatically call IAgentCharacter::StopAll and play a Listening state animation of the character as occurs when the user presses the Listening key. This enables you to use the IAgentNotifySinkEx::ListenStart event to determine whether you wish to stop the current animation and play your own appropriate animation. However, once a user utterance is detected, the server automatically calls IAgentCharacter::StopAll and plays a Hearing state animation.

See also IAgentNotifySinkEx::ListenStart#IAgentNotifySinkEx::ListenStart, IAgentNotifySinkEx::ListeningState#IAgentNotifySinkEx::ListeningState, IAgentSpeechInputProperties::GetEnabled#IAgentSpeechInputProperties::GetEnabled

#IAgentCharacterEx::SetAutoPopupMenu

HRESULT SetAutoPopupMenu(

 long bAutoPopupMenu, // auto pop-up menu display setting

);

Sets whether the server automatically displays the character’s pop-up menu.

• Returns S_OK to indicate the operation was successful.

bAutoPopupMenu

The automatic pop-up menu display flag. If this parameter is True, Microsoft Agent automatically displays the character’s pop-up menu when the user right-clicks the character or character’s taskbar icon.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

By setting this property to False, you can create your own menu-handling behavior. To display the menu after setting this property to False, use the IAgentCharacter::ShowPopupMenu method.

See also IAgentCharacterEx::GetAutoPopupMenu#IAgentCharacterEx::GetAutoPopupMenu, IAgentCharacterEx::ShowPopupMenu#IAgentCharacterEx::ShowPopupMenu

#IAgentCharacterEx::SetHelpContextID

HRESULT SetHelpContextID(

 long ulHelpID // ID for help topic

);

Sets the HelpContextID for the character.

• Returns S_OK to indicate the operation was successful.

ulHelpID

The context number of the help topic for associated with a character; used to provide context-sensitive Help for the character.

If you've created a Windows Help file for your application and set this in the character’s HelpFile property, Microsoft Agent automatically calls Help when HelpModeOn is set to True and the user selects the character. If there is a context number in the HelpContextID, Agent calls Help and searches for the topic identified by the current context number. The current context number is the value of HelpContextID for the character. If there is a context number in the HelpContextID property, Help displays a topic corresponding to the current Help context; otherwise it displays “No Help topic associated with this item.”

This setting applies only when your client application is the active client of the topmost character. It does not affect other clients of the character or other characters that your client application is using.

Note Building a Help file requires the Microsoft Windows Help Compiler.

See also IAgentCharacterEx::GetHelpContextID#IAgentCharacterEx::GetHelpContextID, IAgentCharacterEx::SetHelpModeOn#IAgentCharacterEx::SetHelpModeOn, IAgentCharacterEx::SetHelpFileName#IAgentCharacterEx::SetHelpFileName

#IAgentCharacterEx::SetHelpFileName

HRESULT SetHelpFileName(

 BSTR bszName // Help filename

);

Sets the HelpFileName for a character.

• Returns S_OK to indicate the operation was successful.

bszName

The Help filename for the character.

If you've created a Windows Help file for your application and set the character’s HelpFile property, Microsoft Agent automatically calls Help when HelpModeOn is set to True and the user clicks the character or selects a command from its pop-up menu. If there is a context number in the HelpContextID property of the selected command, Help displays a topic corresponding to the current Help context; otherwise it displays “No Help topic associated with this item.”

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

Note Building a Help file requires the Microsoft Windows Help Compiler.

See also IAgentCommandsEx::SetHelpContextID#IAgentCommandsEx::SetHelpContextID, IAgentCharacterEx::SetHelpModeOn#IAgentCharacterEx::SetHelpModeOn, IAgentCharacterEx::GetHelpFileName#IAgentCharacterEx::GetHelpFileName

#IAgentCharacterEx::SetHelpModeOn

HRESULT SetHelpModeOn(

 long bHelpModeOn // help mode setting

);

Sets context-sensitive Help mode on for the character.

• Returns S_OK to indicate the operation was successful.

bHelpModeOn

Help mode flag. If this parameter is True, Microsoft Agent turns on Help mode for the character.

When you set this property to True, the mouse pointer changes to the context-sensitive Help image when moved over the character or over the pop-up menu for the character. When the user clicks or drags the character or clicks an item in the character’s pop-up menu, the server triggers the IAgentNotifySinkEx::HelpComplete event and exits Help mode.

In Help mode, the server does not send the Click, DragStart, DragComplete, and Command events, unless the GetAutoPopupMenu property returns True. In that case, the server will send the Click event (does not exit Help mode), but only for the right mouse button so you can display the pop-up menu.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

See also IAgentCharacterEx::GetHelpModeOn#IAgentCharacterEx::GetHelpModeOn, IAgentNotifySinkEx::HelpComplete#IAgentNotifySinkEx::HelpComplete

#IAgentCharacterEx::SetLanguageID

HRESULT SetLanguageID(

 long langID // language ID setting of character

);

Sets the language ID set for the character.

• Returns S_OK to indicate the operation was successful.

langID

The language ID setting for the character.

A Long integer specifying the language ID for the character. The language ID (LANGID) for a character is a 16-bit value defined by Windows, consisting of a primary language ID and a secondary language ID. You can use the following values for the specified languages. For more information, see the Win32 SDK documentationhttp://msdn.microsoft.com/developer/sdk/default.htm.

Arabic (Saudi)�0x0401�Italian�0x0410��Basque�0x042d�Japanese�0x0411��Chinese (Simplified)�0x0804�Korean�0x0412��Chinese (Traditional)�0x0404�Norwegian�0x0414��Croatian�0x041A�Polish�0x0415��Czech�0x0405�Portuguese�0x0816��Danish�0x0406�Portuguese (Brazilian)�0x0416��Dutch�0x0413�Romanian�0x0418��English (British)�0x0809�Russian�0x0419��English (US)�0x0409�Slovakian�0x041B��Finnish�0x040B�Slovenian�0x0424��French�0x040C�Spanish�0x0C0A��German� 0x0407�Swedish�0x041D��Greek�0x0408�Thai�0x041E��Hebrew�0x040D�Turkish�0x041F��Hungarian�0x040E����If you do not set the language ID for the character, its language ID will be the current system language ID if the corresponding Agent language DLL is installed; otherwise, the character’s language will be English (US).

This property also determines the language for the word balloon text, the commands in the character’s pop-up menu, and the speech recognition engine. It also determines the default language for TTS output. To determine if there is a compatible speech engine available for the character’s language, use IAgentCharacterEx:GetSRModeID or IAgentCharacterEx::GetTTSModeID.

If you try to set the language ID for a character and the Agent language resources, the code page, or a display font for the language ID is not available, Agent returns an error and the character’s language ID remains at its last setting. Setting this property does not return an error if there are no matching speech engines for the language.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

Note If you set the character’s language ID to a language that supports bidirectional text (such as Arabic or Hebrew), but the system running your application does not have bidirectional support installed, text will appear in the word balloon in logical rather than display order.

See also IAgentCharacterEx:GetLanguageID#IAgentCharacterEx:GetLanguageID, IAgentCharacterEx:GetSRModeID#IAgentCharacterEx:GetSRModeID, IAgentCharacterEx::GetTTSModeID#IAgentCharacterEx::GetTTSModeID

#IAgentCharacterEx::SetSRModeID

HRESULT SetSRModeID(

 BSTR bszModeID // speech recognition engine ID

);

Sets the mode ID of the speech recognition engine set for the character.

• Returns S_OK to indicate the operation was successful.

bszModeID

The mode ID setting of the speech recognition engine for the character.

This setting sets the engine for a character’s speech input. The mode ID for a speech recognition engine is the GUID defined by the speech vendor that uniquely identifies the engine’s mode (formatted with braces and dashes). For more information, see the Microsoft Speech SDK documentationhttp://research.microsoft.com/demos.htm.

If you specify a mode ID that does not match the character’s language setting, if the user has disabled speech recognition (in the Microsoft Agent property sheet), or the engine is not installed, this call will fail. If you do not set a speech recognition engine mode ID for the character, the server sets one that matches the character’s language setting (using Microsoft Speech API interfaces).

When speech input is enabled in the Agent property sheet (Advanced Character Options), setting this property will load the associated engine (if it is not already loaded), and start speech services. That is, the Listening key is available, and the Listening Tip is displayable. (The Listening key and Listening tip are enabled only if they are also enabled in Advanced Character Options.) However, if you query the property when speech is disabled, the server does not start speech services.

This property applies to only the client of the character; the setting does not reflect the setting for other clients of the character or other characters of the client.

Microsoft Agent’s speech engine requirements are based on the Microsoft Speech API. Engines supporting Microsoft Agent’s SAPI requirements can be installed and used with Agent.

See also IAgentCharacterEx:GetSRModeID#IAgentCharacterEx:GetSRModeID

#IAgentCharacterEx::SetTTSModeID

HRESULT SetTTSModeID(

 BSTR bszModeID // TTS engine ID

);

Sets the mode ID of the TTS engine set for the character.

• Returns S_OK to indicate the operation was successful.

bszModeID

The mode ID setting of the TTS engine for the character.

Note SetTTSModeID can fail if Speech.dll is not installed and the engine you specify does not match the character's compiled TTS mode setting.

This setting determines the preferred engine mode for a character’s spoken TTS output. The mode ID for a TTS (text-to-speech) engine is the GUID defined by the speech vendor that uniquely identifies the mode of the engine (formatted with braces and dashes). For more information, see the Microsoft Speech SDK documentationhttp://research.microsoft.com/demos.htm.

If you set a TTS mode ID, it overrides the server attempt to match a speech engine based on the character’s compiled TTS mode ID, the current system language ID, and the character’s current language ID. However, if you attempt to set a mode ID when the user has disabled speech output in the Microsoft Agent property sheet or when the associated engine is not installed, this call will fail.

If you do not set a TTS engine mode ID for the character, the server sets an engine that matches the character’s language setting (using Microsoft Speech API interfaces). Setting this property will load the associated engine if it is not already loaded.

This property applies to only your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

Microsoft Agent’s speech engine requirements are based on the Microsoft Speech API. Engines supporting Microsoft Agent’s SAPI requirements can be installed and used with Agent.

See also IAgentCharacterEx:GetTTSModeID#IAgentCharacterEx:GetTTSModeID

#IAgentCharacterEx::ShowPopupMenu

HRESULT ShowPopupMenu(

 short x, // x-coordinate of pop-up menu

 short y // y-coordinate of pop-up menu

);

Displays the pop-up menu for the character.

• Returns S_OK to indicate the operation was successful.

x

The x-coordinate of the character’s pop-up menu in pixels, relative to the screen origin (upper left).

y

The y-coordinate of the character’s pop-up menu in pixels, relative to the screen origin (upper left).

When you set IAgentCharacterEx::SetAutoPopupMenu to False, the server no longer automatically displays the menu when the character or its taskbar icon is right-clicked. You can use this method to display the menu.

The menu displays until the user selects a command or displays another menu. Only one pop-up menu can be displayed at a time; therefore, calls to this method will cancel (remove) the former menu.

This method should only be called when your client application is the active client of the character; otherwise it fails.

IAgentCharacterEx::SetAutoPopupMenu#IAgentCharacterEx::SetAutoPopupMenu

#IAgentCharacterEx::Think

HRESULT Think(

 BSTR bszText, // text to think

 long * pdwReqID // address of a request ID

);

Displays the character’s thought word balloon with the specified text.

• Returns S_OK to indicate the operation was successful.

bszText

The text to appear in the character’s thought balloon.

pdwReqID

Address of a variable that receives the Think request ID.

Like the Speak method, the Think method is a queued request that displays text in a word balloon, except that thoughts display in a special thought balloon. The thought balloon supports only the Bookmark speech control tag (\Mrk) and ignores any other speech control tags. Unlike Speak, the Think method does not change the character’s animation state.

Like the Speak method, the Think method is a queued request that displays text in a word balloon, except that thoughts display in a special thought balloon. The thought balloon supports only the Bookmark speech control tag (\Mrk) and ignores any other speech control tags. Unlike Speak, the Think method does not change the character’s animation state.

The IAgentBalloon settings also apply to the appearance style of the thought balloon. For example, the balloon’s Enabled property must also be True for the text to display.

Microsoft Agent’s automatic word breaking in the word balloon breaks words using white-space characters (for example, space and tab). However, it may break a word to fit the balloon as well. In languages like Japanese, Chinese, and Thai, where spaces are not used to break words, insert a Unicode zero width space character (0x200B) between characters to define logical word breaks.

Note Set the character’s language ID (using IAgentCharacterEx::SetLanguageID before using the Speak method to ensure appropriate text display within the word balloon.

See also IAgentBalloon::Enabled#IAgentBalloon::Enabled, IAgentBallloonEx::SetStyle#IAgentBallloonEx::SetStyle, IAgentCharacter::Speak#IAgentCharacter::Speak

IAgentCommandsEx defines an interface that extends the IAgentCommands interface.

#IAgentCommandsEx

IAgentCommandsEx defines an interface that extends the IAgentCommands interface.

Methods in Vtable Order

IAgentCommandsEx Methods�Description��SetDefaultID�Sets the default command for the character’s pop-up menu.��GetDefaultID�Returns the default command for the character’s pop-up menu.��SetHelpContextID�Sets the context-sensitive help topic ID for a Commands object��GetHelpContextID�Returns the context-sensitive help topic ID for a Command object .��SetFontName�Sets the font to use in the character’s pop-up menu.��GetFontName�Returns the font used in the character’s pop-up menu.��SetFontSize�Sets the font size to use in the character’s pop-up menu.��GetFontSize�Returns the font size used in the character’s pop-up menu.��SetVoiceCaption�Sets the voice caption for the character’s Commands object.��GetVoiceCaption�Returns the voice caption for the character’s Commands object.��AddEx�Adds a Command object to a Commands collection.��InsertEx�Inserts a Command object in a Commands collection.��SetGlobalVoiceCommandsEnabled�Enables the voice grammar for Agent’s global commands.��GetGlobalVoiceCommandsEnabled�Returns whether the voice grammar for Agent’s global commands is enabled.��#IAgentCommandsEx::AddEx

HRESULT AddEx(

 BSTR bszCaption, // Caption setting for Command

 BSTR bszVoice, // Voice setting for Command

 BSTR bszVoiceCaption, // VoiceCaption setting for Command

 long bEnabled, // Enabled setting for Command

 long bVisible, // Visible setting for Command

 long ulHelpID, // ContextHelpID setting for Command

 long * pdwID // address for variable for ID

);

Adds a Command to a Commands collection.

• Returns S_OK to indicate the operation was successful.

bszCaption

A BSTR that specifies the value of the Caption text displayed for a Command in a Commands collection.

bszVoice

A BSTR that specifies the value of the Voice text setting for a Command in a Commands collection.

bszVoiceCaption

A BSTR that specifies the value of the VoiceCaption text displayed for a Command in a Commands collection.

bEnabled

A Boolean expression that specifies the Enabled setting for a Command in a Commands collection. If the parameter is True, the Command is enabled and can be selected; if False, the Command is disabled.

bVisible

A Boolean expression that specifies the Visible setting for a Command in a Commands collection. If the parameter is True, the Command will be visible in the character’s pop-up menu (if the Caption property is also set).

ulHelpID

The context number of the help topic associated with the Command object; used to provide context-sensitive Help for the command.

pdwID

Address of a variable that receives the ID for the added Command.

IAgentCommandsEx::AddEx extends IAgentCommands::Add by including the HelpContextID property. You can also set the property using IAgentCommands::SetHelpContextID

See also IAgentCommand::Add#IAgentCommand::Add, IAgentCommandsEx::SetHelpContextID#IAgentCommandsEx::SetHelpContextID, IAgentCommand::SetCaption#IAgentCommand::SetCaption, IAgentCommand::SetEnabled#IAgentCommand::SetEnabled, IAgentCommand::SetVisible#IAgentCommand::SetVisible, IAgentCommand::SetVoice#IAgentCommand::SetVoice, IAgentCommands::Insert#IAgentCommands::Insert, IAgentCommandsEx::InsertEx#IAgentCommandsEx::InsertEx, IAgentCommands::Remove#IAgentCommands::Remove, IAgentCommands::RemoveAll#IAgentCommands::RemoveAll

#IAgentCommandsEx::GetDefaultID

HRESULT GetDefaultID(

 long * pdwID // address of default command’s ID

);

Retrieves the ID of the default command in a Commands collection.

• Returns S_OK to indicate the operation was successful.

pdwID

Address of a variable that receives the ID of the Command set as the default.

This property returns the current default Command object in your Commands collection. The default command is bold in the character’s pop-up menu. However, setting the default command does not change command handling or double-click events.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

See also IAgentCommandsEx::SetDefaultID#IAgentCommandsEx::SetDefaultID

#IAgentCommandsEx::GetFontName

HRESULT GetFontName(

 BSTR * pbszFontName // address of variable for font displayed

); // in character’s pop-up menu

Retrieves the value for the font displayed in the character’s pop-up menu.

• Returns S_OK to indicate the operation was successful.

pbszFontName

The address of a BSTR that receives the font name displayed in the character’s pop-up menu.

The font name returned corresponds to the font used to display text in the character’s pop-up menu when your client application is input-active. The default value for the font setting is based on the menu font setting for the character’s language ID setting, or if not set, the user default language ID setting.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

See also IAgentCommandsEx::SetFontName#IAgentCommandsEx::SetFontName, IAgentCommandsEx::SetFontSize#IAgentCommandsEx::SetFontSize

#IAgentCommandsEx::GetFontSize

HRESULT GetFontSize(

 long * plFontSize // address of variable for font size

); // for font displayed in character’s pop-up menu

Retrieves the value for the size of the font displayed in the character’s pop-up menu.

• Returns S_OK to indicate the operation was successful.

plFontSize

The address of a value that receives the size of the font.

The point size of the font returned corresponds to the size defined to display text in the character’s pop-up menu when your client is input-active. The default value for the font setting is based on the menu font setting for the character’s language ID setting, or if not set, the user default language setting.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

See also IAgentCommandsEx::SetFontSize#IAgentCommandsEx::SetFontSize, IAgentCommandsEx::SetFontName#IAgentCommandsEx::SetFontName

#IAgentCommandsEx::GetGlobalVoiceCommandsEnabled

HRESULT GetGlobalVoiceCommandsEnabled(

 long * pbEnabled // address of the global voice command setting

);

Retrieves whether the voice grammar for Agent’s global commands is enabled.

• Returns S_OK to indicate the operation was successful.

pbEnabled

The address that receives True if the voice grammar for Agent’s global commands is enabled, False if disabled.

Microsoft Agent automatically adds voice parameters (grammar) for opening and closing the Voice Commands Window and for showing and hiding the character. When this method returns False, any voice parameters for these commands as well as the voice parameters for the Caption of other clients' Commands objects are not included in the grammar. This enables you to eliminate these from your client’s current active grammar. However, this setting does not reflect the inclusion of these commands in the character’s pop-up menu.

See also IAgentCommandsEx::SetGlobalVoiceCommandsEnabled#IAgentCommandsEx::SetGlobalVoiceCommandsEnabled

#IAgentCommandsEx::GetHelpContextID

HRESULT GetHelpContextID(

 long * pulHelpID // address of Commands object help topic ID

);

Retrieves the HelpContextID for a Commands object.

• Returns S_OK to indicate the operation was successful.

pulHelpID

Address of a variable that receives the context number of the help topic for the Commands object.

If you've created a Windows Help file for your application and set the character’s HelpFile property, Microsoft Agent automatically calls Help when HelpModeOn is set to True and the user selects your Commands object. If there is a context number in the HelpContextID, Agent calls Help and searches for the topic identified by the current context number. The current context number is the value of HelpContextID for the Commands object.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

Note Building a Help file requires the Microsoft Windows Help Compiler.

See also IAgentCommands::SetHelpContextID#IAgentCommands::SetHelpContextID, IAgentCommands::SetHelpModeOn#IAgentCommands::SetHelpModeOn, IAgentCharacterEx::SetHelpFileName#IAgentCharacterEx::SetHelpFileName

 IAgentCommandsEx::GetVoiceCaption

HRESULT GetVoiceCaption(

 BSTR * pbszVoiceCaption // address of command’s voice caption

);

Retrieves the VoiceCaption for a Commands object.

•	Returns S_OK to indicate the operation was successful.

pbszVoiceCaption

The address of a BSTR that receives the value of the Caption text displayed for a Command.

The text returned is that set for your Commands object and appears in the Voice Commands window when your client application is input active.

This property only applies to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

See also IAgentCommandsEx::SetVoiceCaption

IAgentCommandsEx::InsertEx

HRESULT InsertEx(

 BSTR bszCaption, // Caption setting for Command

 BSTR bszVoice, // Voice setting for Command

 BSTR bszVoiceCaption, // VoiceCaption setting for Command

 long bEnabled, // Enabled setting for Command

 long bVisible, // Visible setting for Command

	long ulHelpID, // ContextHelpID setting for Command

 long dwRefID, // reference Command for insertion

 long dBefore, // insertion position flag

 long * pdwID // address for variable for Command ID

);

Inserts a Command object in a Commands collection.

•	Returns S_OK to indicate the operation was successful.

bszCaption

A BSTR that specifies the value of the Caption text displayed for the Command.

bszVoice

A BSTR that specifies the value of the Voice text setting for a Command.

bszVoiceCaption

A BSTR that specifies the value of the VoiceCaption text displayed for a Command in a Commands collection.

bEnabled

A Boolean expression that specifies the Enabled setting for a Command. If the parameter is TRUE, the Command is enabled and can be selected; if FALSE, the Command is disabled.

bVisible

A Boolean expression that specifies the Visible setting for a Command. If the parameter is TRUE, the Command will be visible in the character’s pop-up menu (if the Caption property is also set).

ulHelpID

The context number of the help topic for associated with the Command object; used to provide context-sensitive Help for the command.

dwRefID

The ID of a Command used as a reference for the relative insertion of the new Command.

dBefore

A Boolean expression that specifies where to place the Command. If this parameter is TRUE, the new Command is inserted before the referenced Command; if FALSE, the new Command is placed after the referenced Command.

pdwID

Address of a variable that receives the ID for the inserted Command.

IAgentCommandsEx::InsertEx extends IAgentCommands::Insert by including the the HelpContextID property. You can also set the property using IAgentCommandsEx::SetHelpContextID

See also IAgentCommandsEx::Add, IAgentCommandsEx:SetHelpContextID, IAgentCommand::Add, IAgentCommands::Remove, IAgentCommands::RemoveAll

IAgentCommandsEx::SetDefaultID

HRESULT SetDefaultID(

 long dwID, // default command’s ID

);

Sets the ID of the default command in a Commands collection.

•	Returns S_OK to indicate the operation was successful.

dwID

The ID for the Command to be set as the default.

This property sets the default Command object set in your Commands collection. The default command appears as bold in the character’s pop-up menu. However, setting the default command does not actually change command handling or double-click events.

This property only applies to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

See also IAgentCommandsEx::GetDefaultID

IAgentCommandsEx::SetFontName

HRESULT SetFontName(

 BSTR bszFontName // font to be displayed in character’s pop-up menu

);

Sets the font displayed in the character’s pop-up menu.

•	Returns S_OK to indicate the operation was successful.

bszFontName

A BSTR that sets the font displayed in the character’s pop-up menu.

This property determines the font used to display text in the character’s pop-up menu. The default value for the font setting is based on the menu font setting for the character’s LanguageID setting, or if not set, the user default language ID setting.

This property only applies to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

See also IAgentCommandsEx:GetFontName, IAgentCommandsEx::GetFontSize, IAgentCommandsEx::SetFontSize

#IAgentCommandEx::GetVoiceCaption

HRESULT GetVoiceCaption(

 BSTR * pbszVoiceCaption // address of command’s voice caption text

);

Retrieves the VoiceCaption for a Command.

• Returns S_OK to indicate the operation was successful.

pbszVoiceCaption

The address of a BSTR that receives the value of the Caption text displayed for a Command.

The VoiceCaption is the text that appears for a Command object in the Voice Commands Window when your client application is input-active.

See also IAgentCommandEx::SetVoiceCaption#IAgentCommandEx::SetVoiceCaption, IAgentCommand::SetEnabled#IAgentCommand::SetEnabled, IAgentCommand::SetVisible#IAgentCommand::SetVisible, IAgentCommand::SetVoice#IAgentCommand::SetVoice, IAgentCommandsEx::AddEx#IAgentCommandsEx::AddEx, IAgentCommandsEx::InsertEx#IAgentCommandsEx::InsertEx, IAgentCommands::Add#IAgentCommands::Add, IAgentCommands::Insert#IAgentCommands::Insert

#IAgentCommandEx::SetHelpContextID

HRESULT SetHelpContextID(

 long ulID // ID for help topic

);

Sets the HelpContextID for a Command object.

• Returns S_OK to indicate the operation was successful.

ulID

The context number of the help topic associated with the Command object; used to provide context-sensitive Help for the command.

If you've created a Windows Help file for your application and set this in the character’s HelpFile property. Microsoft Agent automatically calls Help when HelpModeOn is set to True and the user selects the command. If there is a context number in the HelpContextID, Agent calls Help and searches for the topic identified by the current context number. The current context number is the value of HelpContextID for the command.

Note Building a Help file requires the Microsoft Windows Help Compiler.

See also IAgentCommandEx::GetHelpContextID#IAgentCommandEx::GetHelpContextID, IAgentCharacterEx::SetHelpModeOn#IAgentCharacterEx::SetHelpModeOn, IAgentCharacterEx::SetHelpFileName#IAgentCharacterEx::SetHelpFileName

#IAgentCommandsEx::GetVoiceCaption

HRESULT GetVoiceCaption(

 BSTR * pbszVoiceCaption // address of command’s voice caption

);

Retrieves the VoiceCaption for a Commands object.

• Returns S_OK to indicate the operation was successful.

pbszVoiceCaption

The address of a BSTR that receives the value of the Caption text displayed for a Command.

The text returned is that set for your Commands object and appears in the Voice Commands window when your client application is input-active.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

See also IAgentCommandsEx::SetVoiceCaption#IAgentCommandsEx::SetVoiceCaption

#IAgentCommandsEx::InsertEx

HRESULT InsertEx(

 BSTR bszCaption, // Caption setting for Command

 BSTR bszVoice, // Voice setting for Command

 BSTR bszVoiceCaption, // VoiceCaption setting for Command

 long bEnabled, // Enabled setting for Command

 long bVisible, // Visible setting for Command

 long ulHelpID, // ContextHelpID setting for Command

 long dwRefID, // reference Command for insertion

 long dBefore, // insertion position flag

 long * pdwID // address for variable for Command ID

);

Inserts a Command object in a Commands collection.

• Returns S_OK to indicate the operation was successful.

bszCaption

A BSTR that specifies the value of the Caption text displayed for the Command.

bszVoice

A BSTR that specifies the value of the Voice text setting for a Command.

bszVoiceCaption

A BSTR that specifies the value of the VoiceCaption text displayed for a Command in a Commands collection.

bEnabled

A Boolean expression that specifies the Enabled setting for a Command. If the parameter is True, the Command is enabled and can be selected; if False, the Command is disabled.

bVisible

A Boolean expression that specifies the Visible setting for a Command. If the parameter is True, the Command will be visible in the character’s pop-up menu (if the Caption property is also set).

ulHelpID

The context number of the help topic associated with the Command object; used to provide context-sensitive Help for the command.

dwRefID

The ID of a Command used as a reference for the relative insertion of the new Command.

dBefore

A Boolean expression that specifies where to place the Command. If this parameter is True, the new Command is inserted before the referenced Command; if False, the new Command is placed after the referenced Command.

pdwID

Address of a variable that receives the ID for the inserted Command.

IAgentCommandsEx::InsertEx extends IAgentCommands::Insert by including the HelpContextID property. You can also set the property using IAgentCommands::SetHelpContextID

See also IAgentCommandsEx::AddEx#IAgentCommandsEx::AddEx, IAgentCommandsEx:SetHelpContextID#IAgentCommandsEx:SetHelpContextID, IAgentCommand::Add#IAgentCommand::Add, IAgentCommands::Remove#IAgentCommands::Remove, IAgentCommands::RemoveAll#IAgentCommands::RemoveAll

IAgentCommandEx::GetVoiceCaption

HRESULT GetVoiceCaption(

 BSTR * pbszVoiceCaption // address of command’s voice caption text

);

Retrieves the VoiceCaption for a Command.

•	Returns S_OK to indicate the operation was successful.

pbszVoiceCaption

The address of a BSTR that receives the value of the Caption text displayed for a Command.

The VoiceCaption is the text that appears for a Command object in the Voice Commands window when your client application is input active.

See also IAgentCommandEx::SetVoiceCaption, IAgentCommand::SetEnabled, IAgentCommand::SetVisible, IAgentCommand::SetVoice, IAgentCommandsEx::AddEx, IAgentCommandsEx::InsertEx, IAgentCommands::Add, IAgentCommands::Insert

IAgentCommandEx::SetHelpContextID

HRESULT SetHelpContextID(

 long ulID // ID for help topic

);

Sets the HelpContextID for a Command object.

•	Returns S_OK to indicate the operation was successful.

ulID

The context number of the help topic for associated with the Command object; used to provide context-sensitive Help for the command.

If you've created a Windows Help file for your application and set this in the character’s HelpFile property. Agent automatically calls Help when HelpModeOn is set to True and the user selects the command. If there is a context number in the HelpContextID, Agent calls Help and search for the topic identified by the current context number. The current context number is the value of HelpContextID for the command.

Note Building a Help file requires the Microsoft Windows Help Compiler.

See also IAgentCommandEx::GetHelpContextID, IAgentCharacterEx::SetHelpModeOn, IAgentCharacterEx::SetHelpFileName

#IAgentCommandEx::SetVoiceCaption

HRESULT SetVoiceCaption(

 BSTR bszVoiceCaption // voice caption text

);

Sets the VoiceCaption text displayed for a Command.

• Returns S_OK to indicate the operation was successful.

bszVoiceCaption

A BSTR that specifies the text for the VoiceCaption property for a Command.

If you define a Command object in a Commands collection and set its Voice property, you will typically also set its VoiceCaption property. This text will appear in the Voice Commands Window when your client application is input active. If this property is not set, the setting for the Caption property determines the text displayed. When neither the VoiceCaption or Caption property is set, the command does not appear in the Voice Commands Window.

See also IAgentCommand::GetCaption#IAgentCommand::GetCaption, IAgentCommand::SetEnabled#IAgentCommand::SetEnabled, IAgentCommand::SetVisible#IAgentCommand::SetVisible, IAgentCommand::SetVoice#IAgentCommand::SetVoice, IAgentCommandsEx::AddEx#IAgentCommandsEx::AddEx, IAgentCommandsEx::InsertEx#IAgentCommandsEx::InsertEx, IAgentCommands::Add#IAgentCommands::Add, IAgentCommands::Insert#IAgentCommands::Insert

IIAgentBalloonEx

IIAgentBalloonEx is derived from the IAgentBalloon interface. It includes all the IAgentBalloon methods and provides access to additional functions.

Methods in Vtable Order

IAgentBalloonEx Methods�Description��GetStyle�Returns the word balloon’s output style.��SetStyle�Sets the word balloon’s output style.��SetNumLines�Sets the number lines output in the word balloon.��SetNumCharsPerLine�Sets the number of characters per line output in the word balloon.��#IAgentBalloonEx::GetStyle

HRESULT GetStyle(

 long * plStyle, // address of style settings

);

Retrieves the character’s word balloon style settings.

• Returns S_OK to indicate the operation was successful.

plStyle

Style settings for the word balloon, which can be a combination of any of the following values:

const unsigned short �BALLOON_STYLE_BALLOONON = 0x00000001;�The balloon is supported for output.��const unsigned short �BALLOON_STYLE _SIZETOTEXT = 0x0000002;�The balloon height is sized to accommodate the text output.��const unsigned short �BALLOON_STYLE _AUTOHIDE = 0x00000004;�The balloon is automatically hidden.��const unsigned short �BALLOON_STYLE _AUTOPACE = 0x00000008;�The text output is paced based on the output rate. ��When the BalloonOn style bit is set, the word balloon appears when the Speak or Think method is used, unless the user overrides its display through the Microsoft Agent property sheet. When not set, no balloon appears.

When the SizeToText style bit is set, the word balloon automatically sizes the height of the balloon to the current size of the text specified in the Speak or Think method. When not set, the balloon’s height is based on the balloon’s number of lines property setting. This style bit is set to 1 and an attempt to use IAgentBalloonEx::SetNumLines will result in an error.

When the AutoHide style bit is set, the word balloon automatically hides after a short time-out. When not set, the balloon displays until a new Speak or Think call, the character is hidden, or the user clicks or drags the character.

When the AutoPace style bit is set, the word balloon paces the output based on the current output rate, for example, one word at a time. When output exceeds the size of the balloon, the former text is automatically scrolled. When not set, all text included in a Speak or Think statement displays at once.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

The defaults for these style bits are based on the settings when the character is compiled through the Microsoft Agent Character Editor.

See also IAgentBalloonEx::SetStyle#IAgentBalloonEx::SetStyle

#IAgentBalloonEx::SetNumCharsPerLine

HRESULT SetNumCharsPerLine(

 long lCharsPerLine, // number of characters per line setting

);

Sets the number of characters per line that can be displayed in the character’s word balloon.

• Returns S_OK to indicate the operation was successful.

• Returns E_INVALIDARG if the parameter is less than eight.

lCharsPerLine

Number of lines to display in the word balloon.

The minimum setting is 8 and the maximum is 255. If the text specified in the Speak or Think method exceeds the size of the current balloon, Agent automatically scrolls the text in the balloon.

The default setting is based on settings when the character is compiled with the Microsoft Agent Character Editor.

See also IAgentBalloon::GetNumCharsPerLine#IAgentBalloon::GetNumCharsPerLine

#IAgentBalloonEx::SetNumLines

HRESULT SetNumLines(

 long lLines, // number of lines setting

);

Sets the number of lines of text output that can be displayed in the character’s word balloon.

• Returns S_OK to indicate the operation was successful.

• Returns E_INVALIDARG if the parameter is zero.

lLines

Number of lines to display in the word balloon.

The minimum setting is 1 and maximum is 128. If the text specified in the Speak or Think method exceeds the size of the current balloon, Agent automatically scrolls the text in the balloon.

This method will fail if the SizeToText balloon style bit is set.

The default setting is based on settings when the character is compiled with the Microsoft Agent Character Editor.

See also IAgentBalloon::GetNumLines#IAgentBalloon::GetNumLines, IAgentBalloon::GetStyle#IAgentBalloon::GetStyle, IAgentBalloonEx::SetStyle#IAgentBalloonEx::SetStyle

#IAgentBalloonEx::SetStyle

HRESULT SetStyle(

 long lStyle, // style settings

);

Retrieves the character’s word balloon style settings.

• Returns S_OK to indicate the operation was successful.

lStyle

Style settings for the word balloon, which can be a combination of any of the following values:

const unsigned short �BALLOON_STYLE_BALLOONON = 0x00000001;�The balloon is supported for output.��const unsigned short �BALLOON_STYLE _SIZETOTEXT = 0x0000002;�The balloon height is sized to accommodate the text output.��const unsigned short �BALLOON_STYLE _AUTOHIDE = 0x00000004;�The balloon is automatically hidden.��const unsigned short �BALLOON_STYLE _AUTOPACE = 0x00000008;�The text output is paced based on the output rate. ��When the BalloonOn style bit is set, the word balloon appears when the Speak or Think method is used, unless the user overrides its display in the Microsoft Agent property sheet. When not set, no balloon appears.

When the SizeToText style bit is set, the word balloon automatically sizes the height of the balloon to the current size of the text specified in the Speak or Think method. When not set, the balloon’s height is based on the balloon’s number of lines property setting. This style bit is set to 1 and an attempt to use IAgentBalloonEx::SetNumLines will result in an error.

When the AutoHide style bit is set, the word balloon automatically hides after a short timeout. When not set, the balloon displays until a new Speak or Think call, the character is hidden, or the user clicks or drags the character.

When the AutoPace style bit is set, the word balloon paces the output based on the current output rate, for example, one word at a time. When output exceeds the size of the balloon, the former text is automatically scrolled. When not set, all text included in a Speak or Think statement displays at once.

The Balloon’s style property can be set even if the user has disabled display of the Balloon using the Microsoft Agent property sheet.

This property applies only to your client application’s use of the character; the setting does not affect other clients of the character or other characters of your client application.

The defaults for these style bits are based on their settings when the character is compiled with the Microsoft Agent Character Editor.

See also IAgentBalloonEx::GetStyle#IAgentBalloonEx::GetStyle

IagentAudioOutputPropertiesEx

IAgentAudioOutputPropertiesEx is derived from the IAgentAudioOutputProperties interface. It includes all the IAgentAudioOutputProperties methods and provides access to additional functions.

Methods in Vtable Order

IAgentAudioOutputPropertiesEx Methods�Description��GetStatus�Returns the status of the audio output channel.��

#IAgentAudioOutputPropertiesEx::GetStatus

HRESULT GetStatus(

 long * plStatus, // address of audio channel status

);

Retrieves the status of the audio channel.

• Returns S_OK to indicate the operation was successful.

plStatus

Status of the audio output channel, which may be one of the following values:

const unsigned short �AUDIO_STATUS_AVAILABLE = 0;�The audio output channel is available (not busy).��const unsigned short �AUDIO_STATUS_NOAUDIO = 1;�There is no support for audio output; for example, because there is no sound card.��const unsigned short �AUDIO_STATUS_CANTOPENAUDIO = 2;�The audio output channel can’t be opened (is busy); for example, because another application is playing audio.��const unsigned short �AUDIO_STATUS_USERSPEAKING = 3;�The audio output channel is busy because the server is processing user speech input ��const unsigned short �AUDIO_STATUS_CHARACTERSPEAKING = 4;�The audio output channel is busy because a character is currently speaking.��const unsigned short �AUDIO_STATUS_SROVERRIDEABLE = 5;�The audio output channel is not busy, but it is waiting for user speech input. ��const unsigned short �AUDIO_STATUS_ERROR = 6;�There was some other (unknown) problem in attempting to access the audio output channel.��This setting enables your client application to query the state of the audio output channel. You can use this to determine whether to have your character speak or to try to turn on Listening mode (using IAgentCharacterEx::Listen).

IAgentNotifySinkEx

IAgentNotifySinkEx is derived from the IAgentNotifySink interface. It includes all the IAgentNotifySink methods and provides access to additional functions.

Methods in Vtable Order

IAgentNotifySinkEx Methods�Description��HelpComplete�Occurs when the user selects a menu or the character in Help mode.��ListeningState�Occurs when the character’s listening state changes.��Suspend�Occurs when the server suspends operation.��DefaultCharacterChange�Occurs when the user changes the default character.��AgentPropertyChange�Occurs when the user changes an Agent property setting.��ActiveClientChange�Occurs when the active client of a character changes.��

#IAgentNotifySinkEx::ActiveClientChange

HRESULT ActiveClientChange(

...long dwCharID, // character ID

 long lStatus // active state flag

);

Notifies a client application if its active client is no longer the active client of a character.

• No return value.

dwCharID

Identifier of the character for which active client status changed.

lStatus

Active state change of the client, which can be a combination of any of the following values:

const unsigned short ACTIVATE_NOTACTIVE = 0;�Your client is not the active client of the character.��const unsigned short ACTIVATE_ACTIVE = 1;�Your client is the active client of the character.��const unsigned short ACTIVATE_INPUTACTIVE = 2;�Your client is input-active (active client of the topmost character).��

When multiple client applications share the same character, the active client of the character receives mouse input (for example, Microsoft Agent control click or drag events). Similarly, when multiple characters are displayed, the active client of the topmost character (also known as the input-active client) receives IAgentNotifySink::Command events.

When the active client of a character changes, this event passes back the ID of that character and True if your application has become the active client of the character or False if it is no longer the active client of the character.

A client application may receive this event when the user selects another client application’s entry in character’s pop-up menu or by voice command, the client application changes its active status, or another client application quits its connection to Microsoft Agent. Agent sends this event only to the client applications that are directly affected -- those that either become the active client or stops being the active client.

You can use the Activate method to set whether your application is the active client of the character or to make your application the input-active client (which also makes the character topmost).

See also IAgentCharacter::Activate#IAgentCharacter::Activate, IAgentCharacterEx::GetActive#IAgentCharacterEx::GetActive, IAgentNotifySink::ActivateInputState#IAgentNotifySink::ActivateInputState

#IAgentNotifySinkEx::AgentPropertyChange

HRESULT AgentPropertyChange(

);

Notifies a client application when the user changes a Microsoft Agent property setting.

• No return value.

When the user changes a Microsoft Agent property setting in the Microsoft Agent property sheet, the server sends this event to all clients unless the server is currently suspended.

See also IAgentNotifySinkEx::DefaultCharacterChange#IAgentNotifySinkEx::DefaultCharacterChange

#IAgentNotifySinkEx::DefaultCharacterChange

HRESULT DefaultCharacterChange(

 BSTR bszGUID // character identifier

);

Notifies a client application when the default character changes.

• No return value.

bszGUID

The unique identifier for the character.

When the user changes the character assigned as the user’s default character, the server sends this event to clients that have loaded the default character. The event returns the character’s unique identifier (GUID) formatted with braces and dashes, which is defined when the character is built with the Microsoft Agent Character Editor.

When the new character appears, it assumes the same size as any already loaded instance of the character or the previous default character (in that order).

See also IAgent::Load#IAgent::Load

#IAgentNotifySinkEx::HelpComplete

HRESULT HelpComplete(

 long dwCharID, // character ID

 long dwCommandID, // command ID

 long dwCause // cause

);

Notifies a client application when the user selects a command or character to complete Help mode.

• No return value.

dwCharID

Identifier of the character for which Help mode completed.

dwCommandID

Identifier of the command the user selected.

dwCause

The cause for the event, which may be the following values:

const unsigned short �CSHELPCAUSE_COMMAND = 1;�The user selected a command supplied by your application.��const unsigned short CSHELPCAUSE_OTHERPROGRAM = 2;�The user selected the Commands object of another client.��const unsigned short CSHELPCAUSE_OPENCOMMANDSWINDOW = 3;�The user selected the Open Voice Commands command.��const unsigned short CSHELPCAUSE_CLOSECOMMANDSWINDOW = 4;�The user selected the Close Voice Commands command.��const unsigned short CSHELPCAUSE_SHOWCHARACTER = 5;�The user selected the Show CharacterName command.��const unsigned short CSHELPCAUSE_HIDECHARACTER = 6;�The user selected the Hide CharacterName command.��const unsigned short �CSHELPCAUSE_CHARACTER = 7;�The user selected (clicked) the character.��Typically Help mode completes when the user clicks or drags the character or selects a command from the character’s pop-up menu. Clicking on another character or elsewhere on the screen does not cancel Help mode. The client that set Help mode for the character can cancel Help mode by setting IAgentCharacter::HelpModeOn to False. (This does not trigger the IAgentNotifySinkEx::HelpComplete event.)

When the user selects a command from the character’s pop-up menu in Help mode, the server removes the menu, calls Help with the command’s specified ContextHelpID, and sends this event. The context-sensitive (also known as What’s This?) Help window is displayed at the pointer location. If the user selects the command by voice input, the Help window is displayed over the character. If the character is off-screen, the window is displayed on-screen nearest to the character’s current position.

If the server returns dwCommandID as an empty string (“”), it indicates that the user selected a server-supplied command.

This event is sent only to the client application that places the character into Help mode.

See also IAgentCharacterEx::SetHelpModeOn#IAgentCharacterEx::SetHelpModeOn, IAgentCharacterEx::SetHelpFileName#IAgentCharacterEx::SetHelpFileName, IAgentCharacterEx::SetHelpContextID#IAgentCharacterEx::SetHelpContextID, IAgentCommands::SetHelpContextID#IAgentCommands::SetHelpContextID, IAgentCommand::SetHelpContextID#IAgentCommand::SetHelpContextID

#IAgentNotifySinkEx::ListeningState

HRESULT ListeningState(

 long dwCharacterID, // character ID

 long bListening, // listening mode state

 long dwCause // cause

);

Notifies a client application when the Listening mode changes.

• No return value.

dwCharacterID

The character for which the listening state changed.

bListening

The Listening mode state. True indicates that Listening mode has started; False, that Listening mode has ended.

dwCause

The cause for the event, which may be one of the following values.

const unsigned long LSCOMPLETE_CAUSE_PROGRAMDISABLED = 1;�Listening mode was turned off by program code.��const unsigned long LSCOMPLETE_CAUSE_PROGRAMTIMEDOUT = 2;�Listening mode (turned on by program code) timed out.��const unsigned long LSCOMPLETE_CAUSE_USERTIMEDOUT = 3;�Listening mode (turned on by the Listening key) timed out.��const unsigned long LSCOMPLETE_CAUSE_USERRELEASEDKEY = 4;�Listening mode was turned off because the user released the Listening key.��const unsigned long LSCOMPLETE_CAUSE_USERUTTERANCEENDED = 5;�Listening mode was turned off because the user finished speaking.��const unsigned long LSCOMPLETE_CAUSE_CLIENTDEACTIVATED = 6;�Listening mode was turned off because the input active client was deactivated.��const unsigned long�LSCOMPLETE_CAUSE_DEFAULTCHARCHANGE = 7�Listening mode was turned off because the default character was changed.��const unsigned long�LSCOMPLETE_CAUSE_USERDISABLED = 8�Listening mode was turned off because the user disabled speech input.��This event is sent to all clients when the Listening mode begins after the user presses the Listening key or when its time-out ends, or when the input-active client calls the IAgentCharacterEx::Listen method with True or False.

The event returns values to the clients that currently have this character loaded. All other clients receive a null character (empty string).

See also IAgentCharacterEx::Listen#IAgentCharacterEx::Listen

<!----------------------------starts here--------------------------(

Other API Changes

These changes need to be included in both the control and server documentation in the appropriate sections.

Change to the Connected property

The Connected property can no longer be set to False; certain properties of the SpeechInput object that have been replaced still exist, but no longer return any values, and the server no longer fires the Restart and Shutdown events. The Connected property can now only be set to True. This was done to avoid clients from incorrectly disconnecting, causing the Agent server to potentially crash. Clients can still disconnect by releasing all references to Agent objects.

Changes to the Click and DblClick events�(also IAgentNotifySink::Click and IAgentNotifySink::DblClick)

If the character includes a taskbar icon, the server triggers these events when the user clicks or double-clicks the icon. Bit 13 of the button parameter of the events enables your client application to determine whether the event resulted from clicking on the character or its taskbar icon. If the bit is set, the click can on the taskbar icon. For the server's interface the value 0x1000 is OR’d with the fwKeys parameter.

Changes to the Command event�(also IAgentNotifySink::Command)

The Command event now always occurs (for the input active client) when the server handles the speech input, returning a null command ID, the confidence score, and the voice text returned by the speech engine for that entry.

Changes to the Hide event and Visibility property�(also IAgentNotifySink::Hide and IAgentCharacter::GetVisibilityCause)

The following values now apply to the Hide event and Visibility property causes:

1	User hid the character with the character’s taskbar icon pop-up menu or using speech input.

7	User hid the character with the character’s pop-up menu.

Changes to the Move event and MoveCause property�(also IAgentNotifySink::Move and IAgentCharacter::GetMoveCause)

The following value now applies to the Move event and MoveCause property cause:

4	The server moved the character to keep it onscreen after a screen resolution change.

Changes to the Restart and ShutDown events and Suspended property �(also IAgentNotifySink::Restart, IAgentNotifySink::Shutdown, and IAgent::GetSuspended)

The Restart and Shutdown events will no longer occur and the Suspended property will always return False.

Changes to the Load method �(also IAgent::Load)

You can load characters from the Agent subdirectory by specifying a relative path (one that does not include a colon or leading slash character). This prefixes the path to Agent’s characters directory (located in the localized Windows\msagent directory). For example, specifying the following would load Genie.acs from Agent’s Chars directory.

Agent.Character.Load “genie”, “genie.acs”

You can also specify your own directory in Agent’s Chars directory.

Agent.Character.Load “genie”, “MyCharacters\genie.acs”

You can load the character currently set as the current user’s default character by not including a path as the second parameter of the Load method. �

Agent.Character.Load “character”

You cannot load the default character and other characters at the same time from a single control. If you do, the server raises an error. However, you can create another control (client) and load the characters separately.

Changes to the Character object

You can now use Wait, Interrupt, and Stop methods (also IAgentCharacter::Wait, IAgentCharacter::Interrupt, and IAgentCharacter::Stop) to control interaction of different characters loaded by separate clients (controls).

If you declare an object variable of type IAgentCtlCharacter and set it as an item in the Characters collection, you will not be able to access any of the new methods or properties for a Character object. Instead declare your variable as type IAgentCtlCharacterEx and you will be able access all new methods and properties as well as those included in the previous release.

Changes to the IdleOn property�(also IAgentCharacter::GetIdleOn and IAgentCharacter::SetIdleOn)

This property now only applies to the current client of the character. It does not affect other characters.

Changes to the Commands object

If you declare an object variable of type IAgentCtlCommands, you will not be able to access any of the new methods or properties for a Commands object. Instead declare your variable as type IAgentCtlCommandsEx and you will be able access all new methods and properties as well as those included in the previous release.

Changes to the Command object

Commands can be added and appear on the pop-up menu even when their Commands collection does not have a value assigned to its Caption property.

If you declare an object variable of type IAgentCtlCommand and set it as an item in the Commands collection, you will not be able to access any of the new methods or properties for a Command object. Instead declare your variable as type IAgentCtlCommandEx and you will be able access all new methods and properties as well as those included in the previous release.

The Command object’s Voice property now supports repetition operators, + and *. The + (plus) operator defines a repetition of one or more items. The * (asterisk or star) operator indicates a repetition of zero or more items. For example, ��please* try this��results in the “try this”, “please try this”, “please please try this”, with unlimited iterations of “please”. Whereas, ��please+ try this��excludes “try this” because the + operator defines at least one instance of “please”.��These operators follow normal rules of precedence and apply to the immediately preceding text item. For example, ��New York+��results in “New York” and “New York York”, but not “New York New York”. Therefore, you will typically want to use these operators with parentheses grouping symbols. For example, ��(New York)+ ��includes both “New York” and “New York New York”.��Repetition operators are useful when you want to compose a grammar that includes a repeated sequence such as a phone number or specification of a list of items. For example, ��call (0|1|2|3|4|5|6|7|8|9)+ �I’d like (cheese|pepperoni|pineapple|canadian bacon|mushrooms|and)+��Although the operators can also be used with the square brackets optional group, doing so may reduce the efficiency of Agent’s processing of the grammar.

Changes to the Balloon object

The CharSet (also IAgentBalloon::GetFontCharSet and IAgentBalloon::SetFontCharSet) and all balloon font properties now apply only to the current client of the character.

You can now set the number of characters per line and number of lines displayed in a balloon using the Style property on the control. For the server, you can use IAgentBalloonEx::SetNumCharsPerLine and IAgentBalloonEx::SetNumLines properties. In addition, these property settings only apply to the current client of the character.

The Balloon object’s properties also apply to the output of text using Think method.

Changes to the SpeechInput object

The Engine (also IAgentSpeechInputProperties::GetEngine and IAgentSpeechInputProperties::SetEngine) property is now stubbed; cannot be written and always returns an empty string. The new SRModeID property available on the Character object can be used instead.

 The Language (also IAgentSpeechInputProperties::GetLCID) property is now stubbed; always returns an empty string.

The Installed (also IAgentSpeechInputProperties::GetInstalled) property is now stubbed; always returns False.

Querying Enabled (also IAgentSpeechInputProperties::GetEnabled) no longer raises an error if there are no speech engines installed.

Changes to the CommandsWindow object

Querying the CommandsWindow properties do not raise an error, even if speech is disabled. Querying the CommandsWindow properties does not load a speech engine.

Setting the Visible (also IAgentCommandsWindow::SetVisible) property of the CommandsWindow to True loads the speech engine for that client. If there is no speech engine for that client then the Voice Commands Window displays "Speech input not available."

If, while the Voice Commands Window is open, the user switches clients from one that has a compatible speech recognition engine and voice commands to a client without voice commands or without a compatible speech engine, the Voice Commands Window remains open. If the client has no voice commands, then only the server commands appear (no change from existing implementation). If the input-active client has disabled global voice commands, then “No voice commands” appears in the window.

When speech is disabled, and a Voice property has been set by some client, then the Voice Commands Window displays "Speech input disabled.” This occurs both when the window is displayed (by pop-up menu or when a client sets the CommandsWindows Visible property to True) and when the user disables speech while the window is already open. When the user re-enables speech input, the current input active client's voice commands are reactivated.

Changes to the AudioInput object

If you declare an object variable of type IAgentCtlAudioObject, you will not be able to access any of the new methods or properties for the AudioOutput object. Instead declare your variable as type IAgentCtlAudioObjectEx and you will be able access all new methods and properties as well as those included in the previous release.

Changes to the IAgentCharacter::HasOtherClients interface

This call now returns a Long rather than a Boolean value, giving you the number of other clients:

HRESULT HasOtherClients(

 long * plNumOtherClients, // address of variable for number of clients

); // for character

Changes to the IAgentCharacter::Activate interface

The following constants defined for this interface have been renamed. The former constants are still supported for backward compatibility:

ACTIVATE_NOTTOPMOST is now ACTIVATE_NOTACTIVE.

ACTIVATE_TOPMOST is now ACTIVATE_ACTIVE.

Changes to the Agent User Interface

Changes to the character’s pop-up menu

The Open | Close Commands Window command is renamed Open | Close Voice Commands Window command. The command only appears if a (any) client application has defined a Voice property for a Command object. If speech input is disabled (in the Microsoft Agent property sheet), then the command appear disabled.

The text for a client’s commands Caption settings appear in the character’s pop-up menu in the language set by the character’s language ID. If the client does not specify a language, the language is based on the user default language ID.

The text for client commands appear based on the Commands object’s Font and FontSize properties. If a client does not specify these, these settings, the text appears in the menu font and size of the user default language ID.

The Commands object’s Caption settings of other clients appear in the language and font specified by their client in the character’s language ID and Commands object’s Font settings. If the language is not specified, the user default language ID is used. If the font is not specified or is not available, the entry appears in the font of the active client’s settings.

All commands appear in the same font size.

Server commands appear in the language and font specified by the active client in the character’s language ID and the Commands object’s Font settings. If the active client doesn’t set these values, the user default language ID is used.

When a character is hidden, commands included in the pop-up menu displayed by right clicking the character’s taskbar icon appear in the language and font specified by the active client of the character.

Changes to the taskbar icon

The Microsoft Agent taskbar icon no longer appears. Now an icon per character appears if one has been authored for the character and only when the character is loaded.

There is no RESTART or EXIT command on the pop-up menu.

The Hide CharacterName and Show CharacterName commands on the taskbar icon pop-up menu are now appear without the character’s name. In addition, the commands now uses the “H” in Hide and the “h” in Show instead of the first letter of the character’s name..

The Hide All Characters command on the taskbar icon pop-up menu has been removed.

The Microsoft Agent Properties command on the taskbar icon pop-up menu has been removed.

The Exit command on the taskbar icon pop-up menu has been removed.

Hovering with the pointer over the taskbar icon no longer duplicates the text of the Listening Tip. Instead, the taskbar icon tooltip will now display the name of the character in the language and font that matches the language for Windows selected by the user (user default language ID).

Clicking the taskbar icon will display its associated character. It also has the same effect as clicking the character, making the active client of the character input active. If the character is already showing, clicking activates (makes topmost) that character.

Double-clicking the taskbar icon no longer displays the Microsoft Agent property sheet.

Changes to the Microsoft Agent Property Sheet

The Microsoft Agent property sheet’s title bar is re-titled, “Advanced Character Options.”

The Restart Microsoft Agent message will no longer appear and the option to enable the Restart message has been removed.

The Speech Input no longer includes a list of the speech engines or support user selection of a default engine. The default engine is now the first engine that SAPI returns as matching the character’s language ID.

Agent provides support for the user’s default character, a character selectable by the user that applications can share. This character can be loaded by a client application by not including the path parameter for the Load method. ��The user can select the character to be the default character using the default character property sheet. The property pages of this property sheet can be extended to enable third parties to include additional properties for the default character. Client applications can also display the property sheet window through a new API, ShowDefaultCharacterProperties. ��The server notifies clients that have loaded the default character when the user changes their character selection, passing the GUID of the new character. The server automatically unloads the former character and reloads the new character. The queues of any clients that have loaded the default character are halted and flushed. However, the queues of clients that have loaded the character explicitly using the character’s filename are not affected. If necessary, The server also handles automatically resetting the TTS engine for the new character.��To be included in the character selector in the default character property sheet a character must be compiled to support the standard animation set and located in Microsoft Agent’s \Chars directory.

Changes to the Commands Window

The Commands Window is renamed the Voice Commands window.

The Voice Commands Window only appears if speech input is enabled and a client application has authored a voice parameter for one of its Command objects or if a speech input services have been started. Speech input services can be started when any client defines a Voice property for a Command, queries or sets a speech recognition engine’s mode ID, queries SRStatus, or successfully calls Listen.

The title bar text for the Voice Commands Window will appear in the font and language of the user default language ID and includes the name of the character; Voice Commands - CharacterName. If there is no language entry for the character’s name, the US (English) name appears.

A microphone icon has replaced the Microsoft Agent icon for the Voice Commands Window.

The text of the client’s voice commands appears in the font and language based on the input active client’s character language setting, if there is a speech recognition engine for that language. If there is no compatible speech recognition engine for the language, the commands do not appear and instead the localized text “No voice commands available” appears in the language of the active client’s character language setting.

When all characters are hidden, the title bar displays the name of the topmost character in the language and font of the active client of the last hidden character. Similarly, the voice commands appear in the Commands Window in the language and font of the active client of the last hidden character.

The text displayed for a command is based on its VoiceCaption property. If there is no setting for this property, it is based on the command’s Caption property. If neither exists, the command does not appear, but the command may still be speakable (provided that there is a match between the character’s language ID and a language-compatible speech recognition engine).

The server’s voice commands appear in the input active client’s character language ID setting. If there is no compatible speech recognition for the character’s language ID setting, no voice commands appear and the Voice Commands window displays the localized text, “No voice commands available”.

The character’s name that appears as a part of the server’s commands appears in the same language used for the server’s voice commands. If the character has no language entry for the language, the US (English) name appears.

A non-input active client’s Commands object VoiceCaption only appears if that client’s language setting matches that of the current input active client (and only if there is a matching speech recognition engine available).

Character names appear in the server’s commands based on the input active client’s language setting.

Agent determines the font to use in the Voice Commands Window based on font settings that have been added for that Agent language resource. If Agent fails in loading that font, the server will requests the first font available for that language.

Changes to the Microsoft Agent Voice Commands

The language used for the VoiceCaption settings of server-supplied commands are based the input active client’s setting for its topmost character. If there is no matching speech recognition engine, then no server voice commands are available.

The Microsoft Agent Properties command is no longer a global command. This will provide a slight improvement by reducing the possible confusion between this server command and the client’s commands. Similarly, the complementary command to close the property sheet is also removed.

The Hide <CharacterName> commands are now a single Hide command for the input active character, without the character name. This means a character must be activated before it can be hidden.

The Show <CharacterName> commands have been modified to drop the Show verb and just include the character’s name.

The Hide All Characters command is also removed as a global command. The user must now hide all characters individually.

The grammar for displaying the Commands Window becomes:�	(show | open)[the][voice] commands [window]|what can I say [now])

The grammar for closing the Commands Window becomes:�	(hide | close) [the] [voice] commands [window]

Changes to the Listening Tip

The Listening Tip text always indicates the Listening status of the character. If a recognition is passed back the tip displays the following text.��-- CharacterName is listening –�Heard “text heard”��However, when a recognition is passed back and the Listening mode has timed out, but the Listening tip timeout has not, or if Listening mode is still in effect, but the audio channel is not yet available (for example, the user is still holding the Listening key or the Listening mode has not timed out, because the character is speaking), then the tip appears as follows.��CharacterName is not listening –�Heard “text heard”��If there is no language compatible speech engine installed for the input active client’s character, the tip displays the following, where Language represents the selected language of the character.��-- CharacterName is not listening –�Speech input is not available in Language.��If the audio device is not available for other reasons, such as when it is busy or there is some error in attempting to open the audio device the following tip appears when Listening mode is activated.��-- CharacterName is not listening –�Speech input not available.��If your client application has not defined any Voice settings for commands and has also disabled voice parameters for Agent’s global commands, and no client has yet started speech input services, the Listening tip will not appear. However, when any client has started speech input services and the user (pressing the Listening key) or your application calls Listen, the following text appears in the tip.��CharacterName is not listening –�No voice commands.��Speech input services can be started when any client defines a Voice property for a Command, queries or sets a speech recognition engine’s mode ID, queries SRStatus, or successfully calls Listen.��If the user has disabled speech input in the Advanced Character Options, then no Listening tip will appear, as this disables the Listening key.

The Listening Tip text appears in the language based on the input active client’s character language ID setting regardless whether there is a language-compatible speech recognition engine available.

Agent determines the font to use based on font settings that have been added for that Agent language resource. If Agent fails to load that font, the server requests the first font available for that language.

The Listening Tip is also now displayed (when enabled) when a client application successfully turns on listening mode (by setting Listen to True). When listening mode turns off (due to the timeout or if the client sets Listen to False) the Listening Tip is removed after its timeout. Therefore, the behavior matches as what happens when the user presses the Listening key.

When the server gets a server command recognition, but does not act on it because it has a low confidence value, the second line of the Listening Tip displays:��Didn’t understand your request.

If all the characters are hidden, the Listening Tip displays:��--CharacterName is listening –�Say the name of a character to display it.

When the Listening Tip displays the “CharacterName is listening” tip, it now uses the active client’s Commands object’s VoiceCaption setting. If there is no VoiceCaption setting, the tip uses the Commands object’s Caption setting.

Changes to speech recognition input

A character’s language ID setting determines its default speech input language; Agent requests SAPI for an installed engine that matches that language. If a client application does not specify a language preference, Agent will attempt to find a speech recognition engine that matches the user default language ID (using the major language ID, then the minor language ID) if there is a localized Agent dll for that language installed (otherwise the user default language is English). If no engine is available matching this language, speech is disabled for that character.

You can also request a specific speech recognition engine specifying its mode ID (using the character SRModeID property). However, if the language ID for that mode ID does not match the client’s language setting, the call will fail (raise an error in the control). The speech recognition engine will then remain the last successfully set engine by the client, or if none, the engine that matches the current system language ID. If there is still no match, speech input is not available for that client.

A client application can open the listening channel for spoken input for a fixed period of time (preset to 10 seconds by Microsoft Agent). A compatible engine matching must be available for this call to succeed.

When all characters are hidden, no client is input-active. However, in this situation, if the user presses the Listening key, Agent will continue to listen for its commands (using the speech recognition engine matching the topmost character of the last input active client).

When the character is “hearing” (in listening mode and detecting the beginning of an utterance), the server will keep the character in an attentive state rather than allowing the idle animations to play.

The server provides access to the following speech input services: display or hiding of the Voice Commands Window, user access to the Listening key, and automatic display of the Listening tip. The server starts these services when speech input is enabled (in the Advanced Character Options window) and any client defines a Voice setting for a Command, queries or sets a speech recognition engine’s mode ID. The latter two services are only available when they are also enabled in the Advanced Character Options window.

When Listening key mode is on and the user switches to a character that uses a different speech recognition engine, the server switches to and activates that engine and triggers a ListenComplete and then a ListenStart event (also IAgentNotifySink::ListeningState). If the activated character does not have an available speech recognition engine (because one is not installed or none match the activated character’s language ID setting), then the server will trigger the ListenComplete event for the previously activated character and passes back a value in the Cause parameter. However, the server does not generate a ListenStart or ListenComplete events for the clients that do not have speech recognition support.

When the user presses the Listening mode key and there is no matching speech recognition engine available for the topmost character of the input active client, the server does start the Listening key mode timeout, but does not generate a ListenStart (also IAgentNotifySink::ListeningState) event for the active client of the character. However, if, before the timeout completes, the user activates another character with speech recognition engine support, the server does attempt to activate speech input and generates the ListenStart event.

If a client attempts to turn on the listening mode using the Listen method and there is no matching speech recognition engine available, then the call fails and the server does not generate a ListenStart (also IAgentNotifySink::ListeningState)event. In the Agent control, False is returned if the Listen method is called as a function, but the call does not raise an error.

If the input active client switches speech recognition engines by changing SRModeID while in Listening mode, the server switches to and activates that engine without re-triggering the ListenStart (also IAgentNotifySink::ListeningState) event. However, if the specified engine is not available, the call fails (raises an error in the control) and the server also calls the ListenComplete (also IAgentNotifySink::ListeningState) event.

If a client successfully calls the Listen method and a character without speech recognition engine support becomes input active before the Listening mode timeout completes, and then the user switches back to the character of the original client, the server will generate a ListenStart (also IAgentNotifySink::ListeningState) event for that client.

SAPI speech recognition engines must now support the wide interfaces to be used with Microsoft Agent.

Only the engines that clients are using remain loaded.

Changes to TTS output

A character’s language ID setting determines its TTS output. If a client does not specify a language ID for the character, then the character’s language ID is set to the user default language ID. If the character’s definition includes a specific engine and that engine can be loaded and it matches the character’s language setting, that engine will be used. Otherwise, Agent enumerates the other available engines and requests a SAPI best match based on language, gender, and age (in that order). If there is no matching engine available, there is no TTS output for that client’s use of the character.

A client application can also specify a TTS engine for its character (using the TTSModeID property). This overrides the server’s attempt to automatically find a matching engine based on the character’s preferred TTS mode ID or the character’s current language ID setting. However, if that engine is not installed (or cannot otherwise be loaded), then the call will fail (and raise an error in the control). The server then attempts to load another engine based on the language ID, compiled character TTS setting, and available TTS engines. If there is still no match, TTS is not available for that client, but the character can still speak into its word balloon.

A TTS engine no longer loads when the character loads (even if compiled with a TTS setting), but now loads on the first Speak call. It also loads when you query or successfully set its mode ID.

Only the TTS engines in use by any client remain loaded. For example, if a character has a defined preference for a specific engine and that engine is available, but your client application has specified a different engine (by setting a character’s language ID different from the engine or specifying a different mode ID), only the engine specified by your application remains loaded. The engine matching the character’s defined preference TTS setting is unloaded (unless another client is using the character’s compiled engine setting).

Changes to output rendering

Agent will include special sprite support included in Microsoft NT5.

Changes to character files

Agent adds a Version tab to the property sheet of .ACS and .ACF files that displays the name and description of the character, the character file version number, whether the character supports the standard animation set, the character’s GUID, and its preferred TTS Mode ID (if any). It also includes a preview of the character if the character includes a Greet or Idle animation.

The file extension for .ACF animation data files has been changed from .AAF to .ACA to avoid conflicts with the Microsoft ASF conventions.

The character file format has been changed for .ACS file to optimize for in-memory performance.

Changes to Microsoft Agent’s installation

Instead of separate installable per language, the core install will include US English resources with separate resource dlls for each language.

Agent 2.0 is not uninstallable.

Agent 2.0 will install and share interfaces with 1.5. The two will co-exist. The 2.0 install will have to patch the 1.5 install to avoid web pages requesting re-installation.

There will be separate installations of Agent. For NT5, the install will be Unicode enabled. For all other platforms, the install will be ANSI.

Changes to the Microsoft Agent Character Editor

In addition to probability branching, a character animation frame can include an Exit branch. Exit branches are taken whenever a character’s animation is stopped (or interrupted) before it completes and then another animation is played, provided that those branches lead to an end frame for the character. You can use Exit branches to provide a smooth transition to the next animation. Exit branches are also played when the character is stopped or interrupted when the character is speaking.��In some cases, to support speaking and Exit branching, you may need to include a blank, zero length frame at the end of the animation. This can be placed immediately after the Speaking frame of the animation. Then you define Exit branches for frames such that they will sequence to the blank frame. For example, if you had a four frame animation that supports speaking, you could create a blank, zero length duration frame as frame 5. Then set frame 4’s Exit branch to frame 3, frame 3 to frame 2, frame 2 to frame 1, frame 1 to frame 5. This will cause the animation to play normally, but if interrupted to play in specified order, exiting on the blank frame. (The server does not display blank, zero length frames.)

Exit branches can also be used in place of assigning a Return animation, providing a transition between animations even when they normally complete. To assign an animation’s Exit branches as its transitional animation, select Use Exit Branches with the Return animation control.

The Character Editor will now support a field that enables the author of the character to define the character’s name for each language.

The Character Editor will now support a field that enables the author of the character to define the character’s description for each language.

The Character Editor will now support ExtraData for each language.

The Character Editor will now support a field that identifies whether the character supports the standard animation set. Characters that do can be selected as the user’s default character.

The Character Editor will now display the selected Voice Name’s (ID) language, gender, age, style, and vendor.

Corrections and Additional Information

Request Object

When using RequestStart and RequestComplete events, make certain that the Request object exists before you attempt to evaluate it. For example, in VB, if you use a conditional to test whether a specific request was completed, you can use the Nothing keyword.

Sub Agent1_RequestComplete (ByVal Request)

If Not (MyRequest Is Nothing) Then

	If Request = MyRequest Then

	‘-- Do whatever

	End If

End If

End Sub

Commands Object

To specify the access key (underlined character) for a pop-up menu item, precede the alphanumeric character with an ampersand (&).

Balloon Object

CharSet property should be FontCharSet property.

Commands Window

The version 1 documentation on the when you can query the properties of the Commands Window is contradictory. It should indicate that you can query the properties at any time.

Property Sheet Object

For Windows NT5, when calling the server interface for displaying the Voice Commands Window, the Agent property sheet (Advanced Character Options), or the default character property sheet (Character Properties), it may be necessary to call the new AllowSetForegroundWindow API to ensure that this window becomes the foreground window. For more information about setting the foreground window under NT5, see the Win32 documentation.

Speech Tags

The parameter for the Ctx tag should be E-Mail.

RaiseRequestErrors

ShowDefaultCharacterProperties

ActiveClientChange

AgentPropertyChange

DefaultCharacterChange

HelpComplete

ListenStart

Listen

Active

Active

HelpFile

HelpModeOn

HelpModeOn

OriginalHeight

SRModeID

HelpContextIDcommsobjprop

VoiceCaptioncommsobjprop

IAgentEx::ShowDefaultCharacterProperties

IAgentEx::GetVersion

IAgentCharacterEx

IAgentCharacterEx::GetActive

IAgentCharacterEx::GetAnimationNames

IAgentCharacterEx::GetAutoPopupMenu

IAgentCharacterEx::GetGUID

IAgentCharacterEx::GetHelpContextID

IAgentCharacterEx::GetHelpFileName

IAgentCharacterEx::GetHelpModeOn

IAgentCharacterEx::GetLanguageID

IAgentCharacterEx::GetOriginalSize

IAgentCharacterEx::GetSRModeID

IAgentCharacterEx::GetSRStatus

IAgentCharacterEx::GetTTSModeID

IAgentCharacterEx::GetVersion

IAgentCharacterEx::Listen

IAgentCharacterEx::SetAutoPopupMenu

IAgentCharacterEx::SetHelpContextID

IAgentCharacterEx::SetHelpFileName

IAgentCharacterEx::SetHelpModeOn

IAgentCharacterEx::SetLanguageID

IAgentCharacterEx::SetSRModeID

IAgentCharacterEx::SetTTSModeID

IAgentCharacterEx::ShowPopupMenu

IAgentCharacterEx::Think

IAgentCommandsEx

IAgentCommandsEx::AddEx

IAgentCommandsEx::GetDefaultID

IAgentCommandsEx::GetFontName

IAgentCommandsEx::GetFontSize

IAgentCommandsEx::GetGlobalVoiceCommandsEnabled

IAgentCommandsEx::GetHelpContextID

IAgentCommandEx::GetVoiceCaption

IAgentCommandEx::SetHelpContextID

IAgentCommandsEx::GetVoiceCaption

IAgentCommandsEx::InsertEx

IAgentCommandEx::SetVoiceCaption

IAgentBalloonEx::GetStyle

IAgentBalloonEx::SetNumCharsPerLine

IAgentBalloonEx::SetNumLines

IAgentBalloonEx::SetStyle

IAgentAudioOutputPropertiesEx::GetStatus

IAgentNotifySinkEx::ActiveClientChange

IAgentNotifySinkEx::AgentPropertyChange

IAgentNotifySinkEx::DefaultCharacterChange

IAgentNotifySinkEx::HelpComplete

IAgentNotifySinkEx::ListeningState

